论文标题
theodolite:微服务体系结构中分布式流处理引擎的可伸缩性基准测试
Theodolite: Scalability Benchmarking of Distributed Stream Processing Engines in Microservice Architectures
论文作者
论文摘要
分布式流处理引擎的设计侧重于可扩展性,以连续的方式处理大数据量。我们提出了一种定基准测试分布式流处理引擎可扩展性的理想方法。该方法的核心是实施流处理必须实现的微服务的用例定义。对于每个用例,我们的方法都标识可能影响用例可扩展性的相关工作负载尺寸。我们建议每个用例和相关的工作负载维度设计一个基准。我们提出了一个通用的基准测试框架,可以应用于给定的用例和工作负载维度执行单个基准测试。我们的框架执行了用例的数据流体系结构的实现,以实现给定维度的不同工作负载和各种处理实例。这样,它可以确定资源需求如何随着工作量增加而发展。在本文的范围内,我们提出了4种确定的用例,这些用例来自处理工业互联网数据以及7个相应的工作负载维度。我们提供了具有KAFKA流和Apache Flink的4个基准测试的实现,以及我们的基准测试框架的实现,以在云环境中执行可扩展性基准。我们同时使用同时评估理想方法和基准测试Kafka流的基准和Flink的可扩展性,以用于不同的部署选项。
Distributed stream processing engines are designed with a focus on scalability to process big data volumes in a continuous manner. We present the Theodolite method for benchmarking the scalability of distributed stream processing engines. Core of this method is the definition of use cases that microservices implementing stream processing have to fulfill. For each use case, our method identifies relevant workload dimensions that might affect the scalability of a use case. We propose to design one benchmark per use case and relevant workload dimension. We present a general benchmarking framework, which can be applied to execute the individual benchmarks for a given use case and workload dimension. Our framework executes an implementation of the use case's dataflow architecture for different workloads of the given dimension and various numbers of processing instances. This way, it identifies how resources demand evolves with increasing workloads. Within the scope of this paper, we present 4 identified use cases, derived from processing Industrial Internet of Things data, and 7 corresponding workload dimensions. We provide implementations of 4 benchmarks with Kafka Streams and Apache Flink as well as an implementation of our benchmarking framework to execute scalability benchmarks in cloud environments. We use both for evaluating the Theodolite method and for benchmarking Kafka Streams' and Flink's scalability for different deployment options.