论文标题

凸锥中的径向对称性和部分过度确定的问题

Radial symmetry and partially overdetermined problems in a convex cone

论文作者

Lee, Jihye, Seo, Keomkyo

论文摘要

我们通过将最大原理用于合适的亚谐波函数$ p $和积分身份,从而在凸锥中以凸锥中部分过度确定的边界值问题获得径向对称性。在尺寸$ 2 $中,我们证明了在凸锥外部分过度确定问题的锯齿蛋白型结果。此外,我们获得了与锥体中混合边界条件的特征值问题的Rellich身份。

We obtain the radial symmetry of the solution to a partially overdetermined boundary value problem in a convex cone in space forms by using the maximum principle for a suitable subharmonic function $P$ and integral identities. In dimension $2$, we prove Serrin-type results for partially overdetermined problems outside a convex cone. Furthermore, we obtain a Rellich identity for an eigenvalue problem with mixed boundary conditions in a cone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源