论文标题

具有同构非亚伯式的有限偏斜牙套特征性的简单添加剂和圆形组

Finite skew braces with isomorphic non-abelian characteristically simple additive and circle groups

论文作者

Tsang, Cindy

论文摘要

偏斜的支撑是一个三重态$(a,\ cdot,\ circ)$,其中$(a,\ cdot)$和$(a,\ circ)$是群体,以至于支撑关系$ x \ circ(y \ cdot z)=(x \ circ y)在本文中,我们研究了有限的偏斜括号$(a,\ cdot,\ circ)$,达到同构,使得$(a,\ cdot)$和$(a,\ circ)$均与$ t^n $同构为$ t^n $,$ t $ t $ non-belian simple and $ n \ in \ in \ nath \ nath \ nth} $ n} $ n} $ n}。我们证明,它等于$ n+1 $顶点上未标记的有向图的数量,带有一个遥远的顶点,其基本的无向图是一棵树。特别是,它仅取决于$ n $,并且独立于$ t $。

A skew brace is a triplet $(A,\cdot,\circ)$, where $(A,\cdot)$ and $(A,\circ)$ are groups such that the brace relation $x\circ (y\cdot z) = (x\circ y)\cdot x^{-1}\cdot (x\circ z)$ holds for all $x,y,z\in A$. In this paper, we study the number of finite skew braces $(A,\cdot,\circ)$, up to isomorphism, such that $(A,\cdot)$ and $(A,\circ)$ are both isomorphic to $T^n$ with $T$ non-abelian simple and $n\in\mathbb{N}$. We prove that it is equal to the number of unlabeled directed graphs on $n+1$ vertices, with one distingusihed vertex, and whose underlying undirected graph is a tree. In particular, it depends only on $n$ and is independent of $T$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源