论文标题
关于舒尔不平等的概括
On generalizations of Schur's inequality
论文作者
论文摘要
Schur对实数差异的产品的不平等表示,对于$ x,y,z,t \ geq 0 $,$ x^t(x-y)(x-z)(x-z) + y^t(y-z)(y-x)(y-x) + z^t(z-x t(z-x)(z-x)(z-y)(z-y)(z-y)(z-y)\ geq 0 $。在本文中,我们研究了这种不平等的概括,即更多的术语,即变量和代数结构(例如向量和遗传学矩阵)的更通用功能。
Schur's inequality for the sum of products of the differences of real numbers states that for $x,y,z,t\geq 0$, $x^t(x-y)(x-z) + y^t(y-z)(y-x) + z^t(z-x)(z-y) \geq 0$. In this paper we study a generalization of this inequality to more terms, more general functions of the variables and algebraic structures such as vectors and Hermitian matrices.