论文标题
神经架构搜索关键字发现
Neural Architecture Search For Keyword Spotting
论文作者
论文摘要
深度神经网络最近已成为关键字斑点系统的流行解决方案,该解决方案可以通过语音控制智能设备。在本文中,我们将神经体系结构搜索应用于搜索卷积神经网络模型,这些模型可以帮助基于从声学信号中提取的功能,同时维持可接受的内存足迹,从而提高关键字斑点的性能。具体来说,我们使用可区分的体系结构搜索技术来搜索在预定义的单元格搜索空间中的操作员及其连接。然后将发现的细胞缩放在深度和宽度上,以实现竞争性能。我们评估了Google的语音命令数据集上的提出方法,并在文献中通常报告的12级话语分类中实现了97%以上的最新精度。
Deep neural networks have recently become a popular solution to keyword spotting systems, which enable the control of smart devices via voice. In this paper, we apply neural architecture search to search for convolutional neural network models that can help boost the performance of keyword spotting based on features extracted from acoustic signals while maintaining an acceptable memory footprint. Specifically, we use differentiable architecture search techniques to search for operators and their connections in a predefined cell search space. The found cells are then scaled up in both depth and width to achieve competitive performance. We evaluated the proposed method on Google's Speech Commands Dataset and achieved a state-of-the-art accuracy of over 97% on the setting of 12-class utterance classification commonly reported in the literature.