论文标题
过渡磁盘间隙中巨大积聚行星的分离和α对比:自适应光学调查的预测H-αprotoplanet产量
The Separation and H-alpha Contrasts of Massive Accreting Planets in the Gaps of Transitional Disks: Predicted H-alpha Protoplanet Yields for Adaptive Optics Surveys
论文作者
论文摘要
我们提出了一个巨大的吸收缝隙(MAG)行星模型,该模型通过在1:2:4平均运动共振(MMR)中的三个共同平面准圆圈行星的散射作用来确保过渡磁盘的较大差距保持粉尘的宽松。该模型使用观察到的间隙大小的限制和间隙的无尘性性质,以确定MMR中3个巨大行星的〜10%范围内。计算出的轨道与观测到的轨道和H-Alpha发射(观察这些行星的最亮线)在观测误差内观察到的轨道和H-Alpha发射(最亮的线)和PDS 70 C。此外,该模型表明,检测到的H-Alpha行星的稀缺性很可能是非曲率,低(<10%)Strehl,H-Alpha成像的当前局限性的选择效应,该成像具有自适应光学(AO)系统中过去H-Alpha调查中使用的系统。我们预测,随着较高的Strehl AO系统(具有高性能自定义的冠状动物;如6.5 m麦哲伦望远镜Magao-X系统)在H-Alpha中使用,检测到的间隙行星的数量将大大增加超过十倍。例如,我们表明,通过使用Magao-X对最佳19个过渡性磁盘的调查,可以发现> 25个新的H-Alpha“ Gap Planets”。对这些积聚的原始星et的检测将显着提高我们对行星形成,行星生长和积聚,太阳系体系结构和行星磁盘相互作用的理解。
We present a massive accreting gap (MAG) planet model that ensures large gaps in transitional disks are kept dust free by the scattering action of three co-planar quasi-circular planets in a 1:2:4 Mean Motion Resonance (MMR). This model uses the constraint of the observed gap size, and the dust-free nature of the gap, to determine within ~10% the possible orbits for 3 massive planets in an MMR. Calculated orbits are consistent with the observed orbits and H-alpha emission (the brightest line to observe these planets) for LkCa 15 b and PDS 70 b and PDS 70 c within observational errors. Moreover, the model suggests that the scarcity of detected H-alpha planets is likely a selection effect of the current limitations of non-coronagraphic, low (<10%) Strehl, H-alpha imaging with Adaptive Optics (AO) systems used in past H-alpha surveys. We predict that as higher Strehl AO systems (with high-performance custom coronagraphs; like 6.5-m Magellan Telescope MagAO-X system) are utilized at H-alpha the number of detected gap planets will substantially increase by more than tenfold. For example, we show that >25 new H-alpha "gap planets" are potentially discoverable by a survey of the best 19 transitional disks with MagAO-X. Detections of these accreting protoplanets will significantly improve our understanding of planet formation, planet growth and accretion, solar system architectures, and planet disk interactions.