论文标题

马尔可夫随机场的不确定性定量

Uncertainty quantification for Markov Random Fields

论文作者

Birmpa, Panagiota, Katsoulakis, Markos A.

论文摘要

我们提出了一种基于信息的不确定性量化方法,用于一般马尔可夫随机场。马尔可夫随机字段(MRF)是在无方向图上结构化的概率图形模型,并为统计力学,概率机器学习和人工智能提供了基本的统一建模工具。通常,MRF是复杂且高维的,具有模块化方式的节点和边缘(连接),该方式由简单,低维概率模型及其本地连接。反过来,这种模块化允许将可用的数据合并到MRF,并通过利用其图理论结构来有效地模拟它们。从数据中学习图形模型和/或从物理建模和约束中构造它们必须涉及从数据,建模选择或数值近似值中继承的不确定性。 MRF中的这些不确定性可以在图结构或概率分布函数中表现出来,并且必然会在预测利益量的预测中传播。在这里,我们使用基于信息量的预测量量化了这种不确定性;这些边界利用了MRF的图形结构,并且能够处理此类图形模型的固有高维度。我们在MRF中演示了医学诊断和统计力学模型的方法。在后者中,我们为有限尺寸效应和相图开发了不确定性定量范围,这构成了统计力学建模的两个典型预测目标。

We present an information-based uncertainty quantification method for general Markov Random Fields. Markov Random Fields (MRF) are structured, probabilistic graphical models over undirected graphs, and provide a fundamental unifying modeling tool for statistical mechanics, probabilistic machine learning, and artificial intelligence. Typically MRFs are complex and high-dimensional with nodes and edges (connections) built in a modular fashion from simpler, low-dimensional probabilistic models and their local connections; in turn, this modularity allows to incorporate available data to MRFs and efficiently simulate them by leveraging their graph-theoretic structure. Learning graphical models from data and/or constructing them from physical modeling and constraints necessarily involves uncertainties inherited from data, modeling choices, or numerical approximations. These uncertainties in the MRF can be manifested either in the graph structure or the probability distribution functions, and necessarily will propagate in predictions for quantities of interest. Here we quantify such uncertainties using tight, information based bounds on the predictions of quantities of interest; these bounds take advantage of the graphical structure of MRFs and are capable of handling the inherent high-dimensionality of such graphical models. We demonstrate our methods in MRFs for medical diagnostics and statistical mechanics models. In the latter, we develop uncertainty quantification bounds for finite size effects and phase diagrams, which constitute two of the typical predictions goals of statistical mechanics modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源