论文标题
通过极端质量比率的引力波测试时空对称性
Testing spacetime symmetry through gravitational waves from extreme-mass-ratio inspirals
论文作者
论文摘要
即将到来的太空传播引力波检测器的主要目的之一是测量MHz中的辐射范围从极端质量比率灵感来源。这样的检测将对假设的kerr描述对天体物理稳定的黑洞的描述构成强烈限制。 Kerr几何形状在一般相对论上是独特的,它以卡特常数的形式接受了高阶对称性,这意味着描述Kerr背景中测试粒子运动的运动方程是可以综合的。在本文中,我们调查了卡特对称性本身是否可以从重力波形中的Kerr指标的通用变形中看到此类灵感。我们通过构建一个尊重当前观察性约束,描述黑洞并包含两个非Kerr参数的新指标来建立在先前的研究基础上,其中一个控制了Carter对称性的存在或不存在,从而控制了混乱的轨道的存在,另一个控制了Carter对称性,另一个是作为一个通用的变形参数。我们发现,这两个参数将根本不同的特征引入了轨道动力学,并通过重大的逐渐呈现在重力波形中。尽管仅在四极近似中探讨,但与Fisher度量分析一起,这表明重力波数据分析还可以测试,除了重力理论,即时空的基础对称性。
One of the primary aims of upcoming space-borne gravitational wave detectors is to measure radiation in the mHz range from extreme-mass-ratio inspirals. Such a detection would place strong constraints on hypothetical departures from a Kerr description for astrophysically stable black holes. The Kerr geometry, which is unique in general relativity, admits a higher-order symmetry in the form of a Carter constant, which implies that the equations of motion describing test particle motion in a Kerr background are Liouville-integrable. In this article, we investigate whether the Carter symmetry itself is discernible from a generic deformation of the Kerr metric in the gravitational waveforms for such inspirals. We build on previous studies by constructing a new metric which respects current observational constraints, describes a black hole, and contains two non-Kerr parameters, one of which controls the presence or absence of the Carter symmetry, thereby controlling the existence of chaotic orbits, and another which serves as a generic deformation parameter. We find that these two parameters introduce fundamentally distinct features into the orbital dynamics, and evince themselves in the gravitational waveforms through a significant dephasing. Although only explored in the quadrupole approximation, this, together with a Fisher metric analysis, suggests that gravitational wave data analysis may be able to test, in addition to the governing theory of gravity, the underlying symmetries of spacetime.