论文标题
$ d = 5 $在爱因斯坦 - 加斯 - 邦网重旋转黑洞重力:极端质量和角动量
$D=5$ Rotating Black Holes in Einstein-Gauss-Bonnet Gravity: Mass and Angular Momentum in Extremality
论文作者
论文摘要
我们认为爱因斯坦重力的扰动溶液具有较高的扩展,并解决了采取极端极限的一些微妙问题。作为一个具体的新结果,我们在五个维度上构建了扰动的旋转黑洞,具有相等的角度矩$ j $和一般的质量$ m $ $ m $ $ m $ in Einstein-gauss-bonnet重力,直至和包括标准高斯 - 托网的线性顺序,包括标准的高斯式bonnet耦合常数$α$。我们获得了近极溶液的近地平线结构,并具有$α$的订单的变黑因子。在极限限制中,质角动量关系减少到$ m = \frac32π^{\ frac13} j^{\ frac23} +πα$。 $α$ - 纠正的正迹象表明,与旋转相关的离心排斥在高斯 - 骨网术语中的统一要求下的重力吸引力较弱。
We consider perturbative solutions in Einstein gravity with higher-derivative extensions and address some subtle issues of taking extremal limit. As a concrete new result, we construct the perturbative rotating black hole in five dimensions with equal angular momenta $J$ and general mass $M$ in Einstein-Gauss-Bonnet gravity, up to and including the linear order of the standard Gauss-Bonnet coupling constant $α$. We obtain the near horizon structure of the near extremal solution, with the blackening factor of the order $α$. In the extremal limit, the mass-angular momentum relation reduces to $M=\frac32 π^{\frac13} J^{\frac23} + πα$. The positive sign of the $α$-correction implies that the centrifugal repulsion associated with rotations becomes weaker than the gravitational attraction under the unitary requirement for the Gauss-Bonnet term.