论文标题

澄清“跨音量”螺钉位错的定义

Clarifying the definition of 'transonic' screw dislocations

论文作者

Blaschke, Daniel N., Chen, Jie, Fensin, Saryu, Szajewski, Benjamin A.

论文摘要

许多最近的分子动力学(MD)模拟表明,面部居中的立方体(FCC)金属中的螺钉位错可以在最低的剪切波速度($ v_ \ text {shear} $)上实现稳定的稳态运动,这与其运动方向平行(通常称为跨性运动)。这与经典的连续体分析直接形成鲜明对比,该分析预测了在晶体几何依赖于“关键”速度$ v_ \ text {crit} $的宿主材料的弹性能量的差异。在这项工作中,我们首先通过分析分析证明,主机材料的弹性能在位错速度($ v_ \ text {crit} $)上散开,该速度大于$ v_ \ text {shear} $,即$ v_ \ $ v_ \ $ v_ \ text {crit}> v_ \ v_ \ text> v_ \ text> v_ \ text {shear} $ {shear} $ {shear} $。我们认为,后者是后者得出的速度($ v_ \ text {crit} $),它将分析解决方案中的``supsonic''和`suppersonic''级分开。 除了分析外,我们还提供了一套全面的MD模拟结果,用于在低温和室温下的一系列应力和几种立方金属的稳态螺钉脱位运动。在室温下,我们的独立MD模拟和较早的作品都发现稳定的螺钉位错运动仅在我们派生的$ v_ \ text {crit} $下方。尽管如此,在现实世界中多晶材料中,$ v_ \ text {crit} $不能被解释为亚音速脱位运动的硬限制。实际上,在非常低的温度下,我们在10 kelvin处对Cu的MD模拟证实了文献中最近的说法,即在非常低的温度下,可能在非常低的温度下,具有脱位速度的真实“超音速”螺钉位错是$ v> v_ \ text {crit} $。

A number of recent Molecular Dynamics (MD) simulations have demonstrated that screw dislocations in face centered cubic (fcc) metals can achieve stable steady state motion above the lowest shear wave speed ($v_\text{shear}$) which is parallel to their direction of motion (often referred to as transonic motion). This is in direct contrast to classical continuum analyses which predict a divergence in the elastic energy of the host material at a crystal geometry dependent `critical' velocity $v_\text{crit}$. Within this work, we first demonstrate through analytic analyses that the elastic energy of the host material diverges at a dislocation velocity ($v_\text{crit}$) which is greater than $v_\text{shear}$, i.e. $v_\text{crit} > v_\text{shear}$. We argue that it is this latter derived velocity ($v_\text{crit}$) which separates `subsonic' and `supersonic' regimes of dislocation motion in the analytic solution. In addition to our analyses, we also present a comprehensive suite of MD simulation results of steady state screw dislocation motion for a range of stresses and several cubic metals at both cryogenic and room temperatures. At room temperature, both our independent MD simulations and the earlier works find stable screw dislocation motion only below our derived $v_\text{crit}$. Nonetheless, in real-world polycrystalline materials $v_\text{crit}$ cannot be interpreted as a hard limit for subsonic dislocation motion. In fact, at very low temperatures our MD simulations of Cu at 10 Kelvin confirm a recent claim in the literature that true `supersonic' screw dislocations with dislocation velocities $v>v_\text{crit}$ are possible at very low temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源