论文标题

金属添加剂制造的机器学习:使用物理信息的神经网络预测温度和熔融池流体动力学

Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks

论文作者

Zhu, Qiming, Liu, Zeliang, Yan, Jinhui

论文摘要

机器学习(ML)和人工智能(AI)的最新爆炸表现出在金属添加剂制造(AM)过程建模的突破中的巨大潜力。但是,传统机器学习工具在数据科学中的成功主要归因于前所未有的大量标记数据集(大数据),这可以通过实验或第一原则模拟获得。不幸的是,由于AM实验的高昂费用和高保真模拟的高额计算成本,因此在AM中获得这些标签的数据集很昂贵。 我们提出了一个具有物理信息的神经网络(PINN)框架,该框架融合了数据和第一物理原理,包括动量,质量和能量的保护定律,融入神经网络,以告知学习过程。据作者的最佳知识,这是PINN在三维AM过程建模中的第一次应用。此外,我们提出了一种基于Heaviside功能的Dirichlet边界条件(BC)的硬型方法,该方法不仅可以强制执行BC,而且可以加速学习过程。 Pinn框架应用于两个代表性的金属制造问题,包括2018年NIST AM基准测试系列。我们通过将预测与可用的实验数据和高保真仿真结果进行比较,仔细评估了Pinn模型的性能。调查表明,归因于其他物理知识的PINN可以准确地预测金属AM过程中仅具有适量标记的数据集的温度和熔体池动力学。 Pinn对金属AM的企业表明了物理知识深度学习的巨大潜力,以对高级制造业进行更广泛的应用。

The recent explosion of machine learning (ML) and artificial intelligence (AI) shows great potential in the breakthrough of metal additive manufacturing (AM) process modeling. However, the success of conventional machine learning tools in data science is primarily attributed to the unprecedented large amount of labeled data-sets (big data), which can be either obtained by experiments or first-principle simulations. Unfortunately, these labeled data-sets are expensive to obtain in AM due to the high expense of the AM experiments and prohibitive computational cost of high-fidelity simulations. We propose a physics-informed neural network (PINN) framework that fuses both data and first physical principles, including conservation laws of momentum, mass, and energy, into the neural network to inform the learning processes. To the best knowledge of the authors, this is the first application of PINN to three dimensional AM processes modeling. Besides, we propose a hard-type approach for Dirichlet boundary conditions (BCs) based on a Heaviside function, which can not only enforce the BCs but also accelerate the learning process. The PINN framework is applied to two representative metal manufacturing problems, including the 2018 NIST AM-Benchmark test series. We carefully assess the performance of the PINN model by comparing the predictions with available experimental data and high-fidelity simulation results. The investigations show that the PINN, owed to the additional physical knowledge, can accurately predict the temperature and melt pool dynamics during metal AM processes with only a moderate amount of labeled data-sets. The foray of PINN to metal AM shows the great potential of physics-informed deep learning for broader applications to advanced manufacturing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源