论文标题
将机器学习与HPC驱动的模拟集成,以增强学生学习
Integrating Machine Learning with HPC-driven Simulations for Enhanced Student Learning
论文作者
论文摘要
我们探讨了将机器学习(ML)与高性能计算(HPC)驱动的模拟集成的想法,以解决使用模拟教授计算科学和工程课程的挑战。我们证明,使用人工神经网络设计的ML替代物可以与显式模拟相吻合,但在较少的时间和计算成本方面可以很好地预测。我们在NanoHub上开发了一个Web应用程序,该应用程序支持HPC驱动的仿真和ML替代方法以产生仿真输出。该工具均用于课堂内的教学和解决与两个课程相关的家庭作业问题,这些课程涵盖了计算材料科学,建模和模拟的广泛领域,以及启用HPC的模拟的工程应用。通过课堂内学生的反馈和调查对工具的评估表明,ML增强工具提供了动态且响应迅速的模拟环境,可增强学生学习。通过实时参与度和任何时间访问,与模拟框架的互动性的改善使学生能够通过快速可视化输出数量随着输入变化的输出数量变化来开发物理系统行为的直觉。
We explore the idea of integrating machine learning (ML) with high performance computing (HPC)-driven simulations to address challenges in using simulations to teach computational science and engineering courses. We demonstrate that a ML surrogate, designed using artificial neural networks, yields predictions in excellent agreement with explicit simulation, but at far less time and computing costs. We develop a web application on nanoHUB that supports both HPC-driven simulation and the ML surrogate methods to produce simulation outputs. This tool is used for both in-classroom instruction and for solving homework problems associated with two courses covering topics in the broad areas of computational materials science, modeling and simulation, and engineering applications of HPC-enabled simulations. The evaluation of the tool via in-classroom student feedback and surveys shows that the ML-enhanced tool provides a dynamic and responsive simulation environment that enhances student learning. The improvement in the interactivity with the simulation framework in terms of real-time engagement and anytime access enables students to develop intuition for the physical system behavior through rapid visualization of variations in output quantities with changes in inputs.