论文标题
$ n $ contact曲线的明确结构,可通过分区和Zariski元素进行平滑立方体
An explicit construction for $n$-contact curves to a smooth cubic via divisions and Zariski tuples
论文作者
论文摘要
令$ e $为平滑的立方体。如果$ e $和$ d $之间的相交倍数为$ n $,则据说平面曲线$ d $是$ n $ - 接触曲线至$ e $。在本说明中,我们给出了一种算法,将$ n $ - 连接曲线的曲线生成$ e $,并考虑其应用程序。
Let $E$ be a smooth cubic. A plane curve $D$ is said to be an $n$-contact curve to $E$ if the intersection multiplicities at each intersection point between $E$ and $D$ is $n$. In this note, we give an algorithm to produce $n$-contact curves to $E$ and consider its application.