论文标题

$ x_ {0,1} $(2900)和$(d^-k^+)$ qcd laplace sum规则不变质量

$X_{0,1}$(2900) and $(D^-K^+)$ invariant mass from QCD Laplace sum rules at NLO

论文作者

Albuquerque, R. M., Narison, S., Rabetiarivony, D., Randriamanatrika, G.

论文摘要

我们对$ 0^{+} $和$ 1^ - $开放式炭$ $(\ bar c \ bar d)(US)$ TETRAQUARKS以及相应的分子质量和decay常数(QCD光谱频谱规则(QSSR)和相应的分子质量(QCD laplace peritia critia)在稳定性(QCD Laplace pertia)中,我们将重新审视,改进和完成一些最新估计。包括OPE中的Quark和Gluon凝结至尺寸6的贡献。我们与LHCB最近报告的$ d^-k^+$不变质量面对我们的结果,从$ b^+\到d^+(d^-k^+)$衰减。我们预计$ d^-k^+$阈值附近的凸起可以起源于$ 0^{++}(d^-k^+)$分子和/或$ d^-k^-k^+$ scattering。突出的$ x_ {0} $(2900)标量峰值和bump $ x_j(3150)$(如果$ j = 0 $)可以从{\ it最小的混合模型}中出现,并具有很小的混合角度$θ_0\ simeq(5.2 \ pm 1.9) T_M} _0 $)(具有相同量子数的几乎退化的假设分子和紧凑的四夸克态)具有质量$ $ m _ {{{\ cal t_m} _0} $ = 2743(18)(18)MEV和$ d^-k^-K^+$ molecule $ M _ {(DK)_1} = 3678(310)$ MEV。以类似的方式,$ x_1 $(2900)和$ x_j(3350)$(如果$ j = 1 $)可能是向量{\ it Tetramole} $({\ cal t_m} _1)与质量$ M _ {{\ cal t_m} $ ME ME ME ME {质量$ m _ {({\ cal t_m} _1)_1} = 4592(141)$ meV,$θ_1\ simeq(9.1 \ pm 0.6)^0 $。以前的{\ it最小混合模型}的(非)确认需要对3150和3350 MeV的颠簸的量子数进行实验识别。

We revisit, improve and complete some recent estimates of the $0^{+}$ and $1^-$ open charm $(\bar c \bar d)(us)$ tetraquarks and the corresponding molecules masses and decay constants from QCD spectral sum rules (QSSR) by using QCD Laplace sum rule (LSR) within stability criteria where the factorised perturbative NLO corrections and the contributions of quark and gluon condensates up to dimension-6 in the OPE are included. We confront our results with the $D^-K^+$ invariant mass recently reported by LHCb from $B^+\to D^+(D^-K^+)$ decays. We expect that the bump near the $D^-K^+$ threshold can be originated from the $0^{++}(D^-K^+)$ molecule and/or $D^-K^+$ scattering. The prominent $X_{0}$(2900) scalar peak and the bump $X_J(3150)$ (if $J=0$) can emerge from a {\it minimal mixing model}, with a tiny mixing angle $θ_0\simeq (5.2\pm 1.9)^0$, between a scalar {\it Tetramole} (${\cal T_M}_0$) (superposition of nearly degenerated hypothetical molecules and compact tetraquarks states with the same quantum numbers) having a mass $M_{{\cal T_M}_0}$=2743(18) MeV and the first radial excitation of the $D^-K^+$ molecule with mass $M_{(DK)_1}=3678(310)$ MeV. In an analogous way, the $X_1$(2900) and the $X_J(3350)$ (if $J=1$) could be a mixture between the vector {\it Tetramole} $({\cal T_M}_1)$ with a mass $M_{{\cal T_M}_1}=2656(20)$ MeV and its first radial excitation having a mass $M_{({\cal T_M}_1)_1}=4592(141)$ MeV with an angle $θ_1\simeq (9.1\pm 0.6)^0$. A (non)-confirmation of the previous {\it minimal mixing models} requires an experimental identification of the quantum numbers of the bumps at 3150 and 3350 MeV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源