论文标题
在任何量子系统中的任何实现概率幅度上的任意测量
Arbitrary Measurement on Any Real-valued Probability Amplitude in Any Quantum System
论文作者
论文摘要
如何在一般单方面或多方量子系统中实现任意实现的概率幅度,而又没有测量任何其他量子状态的概率幅度?如何在微小的给定误差下实现具有确定性多项式时间的复杂性的任意实现概率幅度?在本文中,提出了一种新颖的量子测量方案,以根据二进制搜索的思想解决这些问题。首先,具有一个单个量子量的量子加速度的测量算法是精心设计的。然后,将测量算法扩展到一般多部分量子系统和特殊的多部分量子系统中的量子状态。理论分析证明,所提出的量子测量方案具有双重优势的量子信息处理的性能:可分开的测量和指数速度提高。
How to achieve an arbitrary real-valued probability amplitude in the general single-partite or multipartite quantum system without measuring any other quantum state's probability amplitude? How to achieve an arbitrary real-valued probability amplitude with the deterministic polynomial time's complexity under a small given error? In this paper, one novel quantum measurement scheme is proposed to solve these questions based on the idea of binary searching. First, the measurement algorithm with the exponential speed-up on the quantum state with one single qubit is well-designed. Then, the measurement algorithm is extended to the quantum states in the general multipartite quantum system and the special multipartite quantum system. The theoretical analysis proves that the proposed quantum measurement scheme has the performance in quantum information processing with twofold advantages: separable measurement and exponential speed up.