论文标题

$ s_q^m $的等距嵌入性在$ s_p^n $中

Isometric Embeddability of $S_q^m$ into $S_p^n$

论文作者

Chattopadhyay, Arup, Hong, Guixiang, Pal, Avijit, Pradhan, Chandan, Ray, Samya Kumar

论文摘要

In this paper, we study existence of isometric embedding of $S_q^m$ into $S_p^n,$ where $1\leq p\neq q\leq \infty$ and $n\geq m\geq 2.$ We show that for all $n\geq m\geq 2$ if there exists a linear isometry from $S_q^m$ into $S_p^n$, where $(1,\ infty] \ times(1,\ infty)\ cup(1,\ infty)\ setMinus \ {3 \} \ times \ {1,\ infty \} $和$ p \ neq q,$ n the this ye this Classirals lyub,$(1,\ infty] \ times(1,\ infty) $ s_q $在\ in \ in \ left(1,\ infty \ right)\ times \ left [2,\ infty \ right)\ cup [4,\ infty)\ times \ times \ times \ times \ weft [2,\ iffty \ right)\ weft(1,\ infty \ right)\ weft(1,\ infty \ right)\ times \ times \ times \ times \ {1 \} \ cup \ few { 1,\ iffty \ right)\ cup [2,\ infty)\ times \ {\ infty \} $带有$ p \ neq q,$,我们必须具有$ q =2。我们的方法依赖于与线性运算符的扰动理论相关的几种新成分,即Kato-Rellich定理,多个操作员积分的理论和Birkhoff-James正交性,然后通过案例分析进行彻底而仔细的案例。对于$ m \ geq 2 $和$ 1 <q <2,$ $ $ s_q^m $嵌入$ s_ \ s_ \ infty^n $的问题是否在\ textit {bull中打开。伦敦数学。 Soc。} 52(2020)437-447。

In this paper, we study existence of isometric embedding of $S_q^m$ into $S_p^n,$ where $1\leq p\neq q\leq \infty$ and $n\geq m\geq 2.$ We show that for all $n\geq m\geq 2$ if there exists a linear isometry from $S_q^m$ into $S_p^n$, where $(q,p)\in(1,\infty]\times(1,\infty) \cup(1,\infty)\setminus\{3\}\times\{1,\infty\}$ and $p\neq q,$ then we must have $q=2.$ This mostly generalizes a classical result of Lyubich and Vaserstein. We also show that whenever $S_q$ embeds isometrically into $S_p$ for $(q,p)\in \left(1,\infty\right)\times\left[2,\infty \right)\cup[4,\infty)\times\{1\} \cup\{\infty\}\times\left( 1,\infty\right)\cup[2,\infty)\times\{\infty\}$ with $p\neq q,$ we must have $q=2.$ Thus, our work complements work of Junge, Parcet, Xu and others on isometric and almost isometric embedding theory on non-commutative $L_p$-spaces. Our methods rely on several new ingredients related to perturbation theory of linear operators, namely Kato-Rellich theorem, theory of multiple operator integrals and Birkhoff-James orthogonality, followed by thorough and careful case by case analysis. The question whether for $m\geq 2$ and $1<q<2,$ $S_q^m$ embeds isometrically into $S_\infty^n$, was left open in \textit{Bull. London Math. Soc.} 52 (2020) 437-447.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源