论文标题
具有差异隐私保证的隐私渠道的数据固定协议
Data Sanitisation Protocols for the Privacy Funnel with Differential Privacy Guarantees
论文作者
论文摘要
在开放数据方法中,政府和其他公共组织希望与公众共享其数据集,以责任和支持参与。必须以保护个人隐私保护的方式打开数据。隐私渠道是一种数学方法,它会产生一个消毒的数据库,该数据库不会泄漏超出所选阈值的私人数据。这种方法的不利因素是,它没有提供最严重的隐私保证,而找到最佳的卫生协议可能是计算上的过敏性。我们通过使用不同的隐私指标来解决这些问题,并考虑一次在一个条目上运行的本地协议。我们表明,在当地差异隐私和本地信息隐私泄漏指标下,可以有效地获得最佳协议。此外,本地信息隐私既与隐私渠道场景的隐私要求都更加一致,又可以更有效地计算。我们还考虑了每个用户具有多个属性的方案,我们为此定义了抵抗侧通道的本地信息隐私,并且我们提供了有效的方法来查找满足此标准的协议,同时仍然提供良好的实用性。最后,我们介绍条件报告,这是一种明确的唇部协议,可以在计算最佳协议时可以使用,并在现实世界和合成数据上测试此协议。关于现实世界和合成数据的实验证实了这些方法的有效性。
In the Open Data approach, governments and other public organisations want to share their datasets with the public, for accountability and to support participation. Data must be opened in such a way that individual privacy is safeguarded. The Privacy Funnel is a mathematical approach that produces a sanitised database that does not leak private data beyond a chosen threshold. The downsides to this approach are that it does not give worst-case privacy guarantees, and that finding optimal sanitisation protocols can be computationally prohibitive. We tackle these problems by using differential privacy metrics, and by considering local protocols which operate on one entry at a time. We show that under both the Local Differential Privacy and Local Information Privacy leakage metrics, one can efficiently obtain optimal protocols. Furthermore, Local Information Privacy is both more closely aligned to the privacy requirements of the Privacy Funnel scenario, and more efficiently computable. We also consider the scenario where each user has multiple attributes, for which we define Side-channel Resistant Local Information Privacy, and we give efficient methods to find protocols satisfying this criterion while still offering good utility. Finally, we introduce Conditional Reporting, an explicit LIP protocol that can be used when the optimal protocol is infeasible to compute, and we test this protocol on real-world and synthetic data. Experiments on real-world and synthetic data confirm the validity of these methods.