论文标题

GKM理论用于环状箭袋格拉曼尼亚人

GKM-Theory for Torus Actions on Cyclic Quiver Grassmannians

论文作者

Lanini, Martina, Pütz, Alexander

论文摘要

我们定义并研究了对Quiver Grassmannians的代数圆环的作用,以实现较高的循环的nilpotent表示。此类品种的示例是$ \ tt $ flag品种,线性退化,$ gl_n $ affine flag品种的有限维近似值和仿生的格拉斯曼尼亚人。我们表明,这些配备了我们的圆环动作的颤抖的司法司法,是GKM-Varieties,他们的时刻图在基础颤抖表示的系数箭量方面接受了组合描述。通过适应冈萨雷斯的设定结果,我们能够证明,可以将图形技术应用于上述颤动草个族的模块化同量构造模块基础。

We define and investigate algebraic torus actions on quiver Grassmannians for nilpotent representations of the equioriented cycle. Examples of such varieties are type $\tt A$ flag varieties, their linear degenerations, finite dimensional approximations of the $GL_n$-affine flag variety and affine Grassmannian. We show that these quiver Grassmannians, equipped with our torus action, are GKM-varieties and that their moment graph admits a combinatorial description in terms of coefficients quiver of the underlying quiver representations. By adapting to our setting results by Gonzales, we are able to prove that moment graph techniques can be applied to construct module bases for the equivariant cohomology of the above quiver Grassmannians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源