论文标题

淋巴结总肿瘤体积检测肿瘤学成像通过关系学习使用图神经网络

Lymph Node Gross Tumor Volume Detection in Oncology Imaging via Relationship Learning Using Graph Neural Network

论文作者

Chao, Chun-Hung, Zhu, Zhuotun, Guo, Dazhou, Yan, Ke, Ho, Tsung-Ying, Cai, Jinzheng, Harrison, Adam P., Ye, Xianghua, Xiao, Jing, Yuille, Alan, Sun, Min, Lu, Le, Jin, Dakai

论文摘要

确定GTV $ _ {ln} $的传播对于定义对许多癌症的外科切除和放射疗法下游工作流的各个切除或照射区域至关重要。与更常见的扩大淋巴结(LN)不同,GTV $ _ {ln} $也包括较小的淋巴结,如果与高正电子发射断层扫描信号和/或CT中的任何转移符号相关联,则还包括较小的淋巴结。这是一项艰巨的任务。在这项工作中,我们提出了一个统一的LN外观和LN关系学习框架,以检测真正的GTV $ _ {ln} $。这是由于先前的临床知识,即LNS形成了连接的淋巴系统,而LNS之间的癌细胞扩散通常遵循某些途径。具体而言,我们首先使用带有ROI-Pooling的3D卷积神经网络来提取GTV $ _ {Ln} $的实例外观功能。接下来,我们介绍一个图神经网络,以进一步对LN之间的关系进行建模,其中全局LN肿瘤空间先验包括在学习过程中。这导致一个端到端的可训练网络,通过对GTV $ _ {LN} $进行分类来检测。我们在一组GTV $ _ {ln} $候选者的候选者上运行模型,该候选者是由初步的第一阶段方法生成的,该方法的灵敏度为$> 85 \%$,费用为高误报(FP)(fp)(fp)($> 15 $ fps)。我们在放射疗法数据集上使用142个配对的PET/RTCT扫描来验证我们的方法,其中包含胸部和上腹部的部位。所提出的方法显着改善了最先进的LN分类方法$ 5.5 \%$和$ 13.1 \%$ f1分数,平均敏感性值分别为$ 2、3、4、6 $ fps,每个患者分别为$ fps。

Determining the spread of GTV$_{LN}$ is essential in defining the respective resection or irradiating regions for the downstream workflows of surgical resection and radiotherapy for many cancers. Different from the more common enlarged lymph node (LN), GTV$_{LN}$ also includes smaller ones if associated with high positron emission tomography signals and/or any metastasis signs in CT. This is a daunting task. In this work, we propose a unified LN appearance and inter-LN relationship learning framework to detect the true GTV$_{LN}$. This is motivated by the prior clinical knowledge that LNs form a connected lymphatic system, and the spread of cancer cells among LNs often follows certain pathways. Specifically, we first utilize a 3D convolutional neural network with ROI-pooling to extract the GTV$_{LN}$'s instance-wise appearance features. Next, we introduce a graph neural network to further model the inter-LN relationships where the global LN-tumor spatial priors are included in the learning process. This leads to an end-to-end trainable network to detect by classifying GTV$_{LN}$. We operate our model on a set of GTV$_{LN}$ candidates generated by a preliminary 1st-stage method, which has a sensitivity of $>85\%$ at the cost of high false positive (FP) ($>15$ FPs per patient). We validate our approach on a radiotherapy dataset with 142 paired PET/RTCT scans containing the chest and upper abdominal body parts. The proposed method significantly improves over the state-of-the-art (SOTA) LN classification method by $5.5\%$ and $13.1\%$ in F1 score and the averaged sensitivity value at $2, 3, 4, 6$ FPs per patient, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源