论文标题

使用Krylov子空间方法计算矩阵函数的Fréchet衍生物的低级别近似值

Computing low-rank approximations of the Fréchet derivative of a matrix function using Krylov subspace methods

论文作者

Kandolf, Peter, Koskela, Antti, Relton, Samuel D., Schweitzer, Marcel

论文摘要

矩阵函数$ f(a)$的fréchet衍生品$ l_f(a,e)$在许多不同的应用程序中起重要作用,包括条件号估计和网络分析。当方向项$ e $是等级第一时,我们提出了几种不同的Krylov子空间方法,用于计算$ l_f(a,e)$的低级别近似值(很容易扩展到一般的低级级别)。我们分析了最重要的特殊情况,即$ a $是Hermitian,而$ f $是指数,对数或stieltjes函数的融合。在许多数值测试中,包括来自基准收集的矩阵和现实世界应用的矩阵,我们演示和比较了所提出方法的准确性和效率。

The Fréchet derivative $L_f(A,E)$ of the matrix function $f(A)$ plays an important role in many different applications, including condition number estimation and network analysis. We present several different Krylov subspace methods for computing low-rank approximations of $L_f(A,E)$ when the direction term $E$ is of rank one (which can easily be extended to general low-rank). We analyze the convergence of the resulting method for the important special case that $A$ is Hermitian and $f$ is either the exponential, the logarithm or a Stieltjes function. In a number of numerical tests, both including matrices from benchmark collections and from real-world applications, we demonstrate and compare the accuracy and efficiency of the proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源