论文标题

销售铅笔 - 微观波动的宏观随机性

Toppling pencils -- Macroscopic Randomness from Microscopic Fluctuations

论文作者

Dittrich, Thomas, Martínez, Santiago Peña

论文摘要

我们构建了一个微观模型,以研究双态系统中的离散随机性,并结合包含许多自由度的环境。四分之一的双井是双线性耦合到有限数量的谐波振荡器的。在数值上求解时间逆转的汉密尔顿运动方程,我们表明,对于$ n = 1 $,在KAM场景之后,该系统表现出,耦合强度从可集成到混乱运动的耦合强度提高。将$ n $筹集到10及更高级别的订单的值中,动力学跨越了准释放,接近了潜力的两个最小值的稳定平衡之一。我们通过记录自相关,部分熵的时间依赖性以及井之间的跳跃频率作为$ n $的功能和其他参数,来证实这种放松对系统其他特征时间尺度的不可逆性。在屏障顶部的不稳定平衡中制备中心系统,并以从高斯分布中绘制的随机初始状态,在空间反射下对称,我们证明了决定是否放松在左或右孔中的决定是由在浴振荡器的初始位置和瞬间的矩形中的残基确定的。这一结果核对了渐近状态的随机性和自发对称性破坏与规范变换下的熵的保守性,以及对BISSABLE系统的潜在和初始条件的明显对称性。

We construct a microscopic model to study discrete randomness in bistable systems coupled to an environment comprising many degrees of freedom. A quartic double well is bilinearly coupled to a finite number $N$ of harmonic oscillators. Solving the time-reversal invariant Hamiltonian equations of motion numerically, we show that for $N = 1$, the system exhibits a transition with increasing coupling strength from integrable to chaotic motion, following the KAM scenario. Raising $N$ to values of the order of 10 and higher, the dynamics crosses over to a quasi-relaxation, approaching either one of the stable equilibria at the two minima of the potential. We corroborate the irreversibility of this relaxation on other characteristic timescales of the system by recording the time dependences of autocorrelation, partial entropy, and the frequency of jumps between the wells as functions of $N$ and other parameters. Preparing the central system in the unstable equilibrium at the top of the barrier and the bath in a random initial state drawn from a Gaussian distribution, symmetric under spatial reflection, we demonstrate that the decision whether to relax into the left or the right well is determined reproducibly by residual asymmetries in the initial positions and momenta of the bath oscillators. This result reconciles the randomness and spontaneous symmetry breaking of the asymptotic state with the conservation of entropy under canonical transformations and the manifest symmetry of potential and initial condition of the bistable system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源