论文标题
确保基于层次结构的印度遗产纪念碑的检索
Semantics Preserving Hierarchy based Retrieval of Indian heritage monuments
论文作者
论文摘要
纪念碑分类可以基于其外观和形状从粗糙的类别进行。尽管纪念碑中存在着许多语义信息,这些信息反映在它们所建造的时代,其类型或目的,建立它的王朝等。特别是,由于其丰富的文化遗产,印度次大陆的建筑风格却有很大的变化。在本文中,我们提出了一个框架,该框架利用层次结构在执行图像分类或图像检索时保留语义信息。我们编码学习的深层嵌入式以构建图像字典,然后使用DELF功能在检索结果上使用重新级别的框架。这些嵌入中保存的语义信息有助于在层次结构中较高的粒度级别分类未知的古迹。我们策划了一个大型新型印度遗产纪念碑数据集,其中包括历史,文化和宗教重要性图像,以及时代,王朝和建筑风格的亚型。我们演示了在图像分类和检索任务中提出的框架的性能,并将其与该数据集上的其他竞争方法进行比较。
Monument classification can be performed on the basis of their appearance and shape from coarse to fine categories. Although there is much semantic information present in the monuments which is reflected in the eras they were built, its type or purpose, the dynasty which established it, etc. Particularly, Indian subcontinent exhibits a huge deal of variation in terms of architectural styles owing to its rich cultural heritage. In this paper, we propose a framework that utilizes hierarchy to preserve semantic information while performing image classification or image retrieval. We encode the learnt deep embeddings to construct a dictionary of images and then utilize a re-ranking framework on the the retrieved results using DeLF features. The semantic information preserved in these embeddings helps to classify unknown monuments at higher level of granularity in hierarchy. We have curated a large, novel Indian heritage monuments dataset comprising of images of historical, cultural and religious importance with subtypes of eras, dynasties and architectural styles. We demonstrate the performance of the proposed framework in image classification and retrieval tasks and compare it with other competing methods on this dataset.