论文标题
使用第一原则
Tunnel magnetoresistance in scandium nitride magnetic tunnel junctions using first principles
论文作者
论文摘要
磁性隧道连接处是自旋设备和电路的基石,为磁性和电气信息提供了转换的主要方式。在最新的磁性隧道连接处,氧化镁被用作磁电极之间的隧道屏障,在室温下提供了独特的大型隧道磁路线。但是,氧化镁铁系统的宽带隙和带状对齐增加了电阻区域的产物,并在高电流下引起了设备对设备变化的挑战和隧道屏障降解。在这里,我们使用第一原理研究较窄的带氮化物隧道隧道特性和与氧化镁相比,磁性隧道连接中的运输。这些模拟通过Δ_1和Δ_2'对称滤波在Fe/scn/fe mTJ中表现出高隧道磁磁性,并具有低波动衰减速率,从而允许低电阻区域产物。结果表明,硝化扫描剂可能是磁性隧道接线设备的新隧道屏障材料,以克服变异性和电流注入挑战。
The magnetic tunnel junction is a cornerstone of spintronic devices and circuits, providing the main way to convert between magnetic and electrical information. In state-of-the-art magnetic tunnel junctions, magnesium oxide is used as the tunnel barrier between magnetic electrodes, providing a uniquely large tunnel magnetoresistance at room temperature. However, the wide bandgap and band alignment of magnesium oxide-iron systems increases the resistance-area product and causes challenges of device-to-device variability and tunnel barrier degradation under high current. Here, we study using first principles narrower-bandgap scandium nitride tunneling properties and transport in magnetic tunnel junctions in comparison to magnesium oxide. These simulations demonstrate a high tunnel magnetoresistance in Fe/ScN/Fe MTJs via Δ_1 and Δ_2' symmetry filtering with low wavefunction decay rates, allowing a low resistance-area product. The results show that scandium nitride could be a new tunnel barrier material for magnetic tunnel junction devices to overcome variability and current-injection challenges.