论文标题

与超导QUBITS的谐振耦合参数估计

Resonant Coupling Parameter Estimation with Superconducting Qubits

论文作者

Béjanin, J. H., Earnest, C. T., Sanders, Y. R., Mariantoni, M.

论文摘要

当今的量子计算机由数十个量子位彼此相互作用以及日益复杂的网络中的环境组成。为了在操作此类系统时达到最佳性能,必须准确了解量子计算机中的所有参数。在本文中,我们在理论上和实验上证明了一种有效地了解由频率可触发超导码头组成的量子计算机的共振相互作用参数的方法。这样的交互包括,例如,这些互动包括其他量子器,谐振器,两级状态缺陷或其他不需要的模式。我们的方法是基于显着改进的掉期光谱校准,由脱机数据收集算法组成,然后是在线贝叶斯学习算法。离线算法的目的是从零知识的状态检测并粗略地估计共振的相互作用。它在测量次数中产生平方根减少。在线算法随后完善了参数的估计值,以与传统的交换光谱校准相当,但在恒定时间内。我们通过超导量子量进行实施实现我们的技术。通过将这两种算法结合在一起,我们观察到校准时间减少了一个数量级。我们认为,所研究的方法将改善当前中等规模的超导量子计算机,还将扩展到较大的系统。最后,从事量子计算体系结构的不同物理实现的社区可以很容易地采用此处介绍的两种算法。

Today's quantum computers are comprised of tens of qubits interacting with each other and the environment in increasingly complex networks. In order to achieve the best possible performance when operating such systems, it is necessary to have accurate knowledge of all parameters in the quantum computer Hamiltonian. In this article, we demonstrate theoretically and experimentally a method to efficiently learn the parameters of resonant interactions for quantum computers consisting of frequency-tunable superconducting qubits. Such interactions include, for example, those to other qubits, resonators, two-level state defects, or other unwanted modes. Our method is based on a significantly improved swap spectroscopy calibration and consists of an offline data collection algorithm, followed by an online Bayesian learning algorithm. The purpose of the offline algorithm is to detect and roughly estimate resonant interactions from a state of zero knowledge. It produces a square-root reduction in the number of measurements. The online algorithm subsequently refines the estimate of the parameters to comparable accuracy as traditional swap spectroscopy calibration, but in constant time. We perform an experiment implementing our technique with a superconducting qubit. By combining both algorithms, we observe a reduction of the calibration time by one order of magnitude. We believe the method investigated will improve present medium-scale superconducting quantum computers and will also scale up to larger systems. Finally, the two algorithms presented here can be readily adopted by communities working on different physical implementations of quantum computing architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源