论文标题
皮肤病变分割对皮肤镜图像分类性能的影响
The Effects of Skin Lesion Segmentation on the Performance of Dermatoscopic Image Classification
论文作者
论文摘要
恶性黑色素瘤(MM)是皮肤癌最致命的类型之一。分析皮肤镜图像在早期检测MM和其他有色皮肤病变中起着重要作用。在不同的基于计算机的方法中,基于深度学习的方法,尤其是卷积神经网络,已显示出出色的分类和分割性能表皮皮肤病变图像。这些模型可以端对端训练,而无需任何手工制作的功能。但是,使用病变细分信息对分类性能的影响仍然是一个空旷的问题。在这项研究中,我们明确研究了使用皮肤病变分割掩模对皮肤镜图像分类性能的影响。为此,首先,我们开发了一个基线分类器作为参考模型,而无需使用任何分割掩码。然后,我们在不同情况下在训练和测试阶段中使用手动或自动创建分段掩码,并研究了分类性能。对ISIC 2017挑战数据集进行了评估,该数据集包含两个二进制分类任务(即MM与All和Seborrheic角化病(SK)与ALL),并基于接收器操作特征曲线得分下的派生区域,我们观察到了四个主要的胜利。我们的结果表明,1)使用分割面膜在任何情况下都没有显着提高MM分类性能,2)在其中一个场景中(使用用于扩张裁剪的分割掩模),SK分类性能显着提高,3)3)删除所有背景信息,从而通过分割的整体效果进行分类,并在使用分类的情况下进行分类,并在使用的整体上进行分类(使用4),并使用44例使用(使用4)。使用手动或自动创建分割掩码没有显着差异。
Malignant melanoma (MM) is one of the deadliest types of skin cancer. Analysing dermatoscopic images plays an important role in the early detection of MM and other pigmented skin lesions. Among different computer-based methods, deep learning-based approaches and in particular convolutional neural networks have shown excellent classification and segmentation performances for dermatoscopic skin lesion images. These models can be trained end-to-end without requiring any hand-crafted features. However, the effect of using lesion segmentation information on classification performance has remained an open question. In this study, we explicitly investigated the impact of using skin lesion segmentation masks on the performance of dermatoscopic image classification. To do this, first, we developed a baseline classifier as the reference model without using any segmentation masks. Then, we used either manually or automatically created segmentation masks in both training and test phases in different scenarios and investigated the classification performances. Evaluated on the ISIC 2017 challenge dataset which contained two binary classification tasks (i.e. MM vs. all and seborrheic keratosis (SK) vs. all) and based on the derived area under the receiver operating characteristic curve scores, we observed four main outcomes. Our results show that 1) using segmentation masks did not significantly improve the MM classification performance in any scenario, 2) in one of the scenarios (using segmentation masks for dilated cropping), SK classification performance was significantly improved, 3) removing all background information by the segmentation masks significantly degraded the overall classification performance, and 4) in case of using the appropriate scenario (using segmentation for dilated cropping), there is no significant difference of using manually or automatically created segmentation masks.