论文标题
方形拓扑半学
Square-root topological semimetals
论文作者
论文摘要
我们提出了在两个和三个维度上针对紧密结合模型的方形操作产生的拓扑半学,我们称之为方形拓扑半学。方形拓扑半学的托管拓扑带在有限的能量下接触,其拓扑保护是从平方的哈密顿式传承的。这种拓扑特征也反映在有限能量的边界模式的出现中。具体来说,专注于AIII级平方哈密顿量的拓扑特性,我们揭示了装饰的蜂窝(装饰的钻石)模型可容纳有限的能源狄拉克锥(节点线)。我们还提出了在弹簧质量模型中实现方形拓扑半学的实现,其中有限能源dirac点的鲁棒性与张力变化的变化得到了阐明。
We propose topological semimetals generated by the square-root operation for tight-binding models in two and three dimensions, which we call square-root topological semimetals. The square-root topological semimetals host topological band touching at finite energies, whose topological protection is inherited from the squared Hamiltonian. Such a topological character is also reflected in emergence of boundary modes with finite energies. Specifically, focusing on topological properties of squared Hamiltonian in class AIII, we reveal that a decorated honeycomb (decorated diamond) model hosts finite-energy Dirac cones (nodal lines). We also propose a realization of a square-root topological semimetal in a spring-mass model, where robustness of finite-energy Dirac points against the change of tension is elucidated.