论文标题

Cygnus:对暗物质和中微子有方向敏感的核后坐线路的可行性

CYGNUS: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos

论文作者

Vahsen, S. E., O'Hare, C. A. J., Lynch, W. A., Spooner, N. J. C., Baracchini, E., Barbeau, P., Battat, J. B. R., Crow, B., Deaconu, C., Eldridge, C., Ezeribe, A. C., Ghrear, M., Loomba, D., Mack, K. J., Miuchi, K., Mouton, F. M., Phan, N. S., Scholberg, K., Thorpe, T. N.

论文摘要

既然传统的弱相互作用的巨大粒子(WIMP)暗物质搜索正在接近中微子地板,那么人们对探测器对核后坐方向的敏感性产生了兴趣。大规模定向检测器具有吸引力,因为它的灵敏度在中微子地板下方,能够明确地建立所谓的暗物质信号的银河系来源,并且可以作为中微子天文台双重目的。我们介绍了1000 m $^3 $尺度检测器的第一个详细分析,该检测器能够测量低能量处的方向性核后坐力信号。我们提出了一个模块化和多站点的天文台,该天文台包括时间投影室(TPC)在大气压力下装有氦气和SF $ _6 $。根据TPC读数技术,在6 KEVR上方的10-20架氦后坐力或仅在20 keVR以上的3-4个后坐力足以将10 GEV WIMP信号与太阳中微子背景区分开。高分辨率电荷读数还可以使强大的电子背景拒绝功能低于10 KEV。我们以1000 m $^3 $ scale的身份详细说明背景和站点要求,并确定需要改善放射性功能的材料。我们称Cygnus-1000的最终实验将能够根据最终能量阈值观察到太阳的10-40个中微子。通过相同的暴露,对旋转独立横截面的敏感性将延伸至目前未开发的sub-10 GEV参数空间。对于旋转依赖的相互作用,已经进行了10 m $^3 $ -Scale实验可以与即将到来的两个探测器竞争,但是Cygnus-1000可以大大改善这一点。较大的体积会从更广泛的来源(包括银河系超新星,核反应堆和地质过程)带来对中微子的敏感性。

Now that conventional weakly interacting massive particle (WIMP) dark matter searches are approaching the neutrino floor, there has been a resurgence of interest in detectors with sensitivity to nuclear recoil directions. A large-scale directional detector is attractive in that it would have sensitivity below the neutrino floor, be capable of unambiguously establishing the galactic origin of a purported dark matter signal, and could serve a dual purpose as a neutrino observatory. We present the first detailed analysis of a 1000 m$^3$-scale detector capable of measuring a directional nuclear recoil signal at low energies. We propose a modular and multi-site observatory consisting of time projection chambers (TPCs) filled with helium and SF$_6$ at atmospheric pressure. Depending on the TPC readout technology, 10-20 helium recoils above 6 keVr or only 3-4 recoils above 20 keVr would suffice to distinguish a 10 GeV WIMP signal from the solar neutrino background. High-resolution charge readout also enables powerful electron background rejection capabilities well below 10 keV. We detail background and site requirements at the 1000 m$^3$-scale, and identify materials that require improved radiopurity. The final experiment, which we name CYGNUS-1000, will be able to observe 10-40 neutrinos from the Sun, depending on the final energy threshold. With the same exposure, the sensitivity to spin independent cross sections will extend into presently unexplored sub-10 GeV parameter space. For spin dependent interactions, already a 10 m$^3$-scale experiment could compete with upcoming generation-two detectors, but CYGNUS-1000 would improve upon this considerably. Larger volumes would bring sensitivity to neutrinos from an even wider range of sources, including galactic supernovae, nuclear reactors, and geological processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源