论文标题

通过Zeeman拆分实现的混合自旋(1/2,1)的混合自旋 - (1/2,1)的双分式纠缠的非常规加强

Unconventional strengthening of a bipartite entanglement of a mixed spin-(1/2,1) Heisenberg dimer achieved through Zeeman splitting

论文作者

Čenčariková, Hana, Strečka, Jozef

论文摘要

双方量子和热纠缠在混合自旋(1/2,1)的纯和混合状态下进行了量化。结果表明,负性可以用作零和非零温度的两部分纠缠的量度,这在很大程度上取决于固有参数,例如交换和单轴单轴离子各向异性,除了温度和磁场之类的外链参数外。事实证明,由于能量水平的Zeeman分裂,磁场的上升磁场出乎意料地加强了两分的纠缠,从而提高了量子铁磁基态的两倍变性。因此,在足够低但非零磁场的量子铁磁相中,最大的两分纠缠在假设旋转-1/2的旋转Gymagnetic G因子和Spin-1磁离子和单轴单轴型离子型离子均离子型相等的假设上达到了非零磁场。建议的是异核综合体[Ni(dpt)(h $ _2 $ o)cu(pba)] $ \ cdot $ 2H $ _2 $ o(pba = 1,3-丙烯比(oxamato)(oxamato)和dpt = bis-(3-氨氨基丙基)氨基氨基(3-氨氨基丙基)氨基,这剩下的是持续的实验性的lim-(1)。与相关的交换常数相当。

The bipartite quantum and thermal entanglement is quantified within pure and mixed states of a mixed spin-(1/2,1) Heisenberg dimer with the help of negativity. It is shown that the negativity, which may serve as a measure of the bipartite entanglement at zero as well as nonzero temperatures, strongly depends on intrinsic parameters as for instance exchange and uniaxial single-ion anisotropy in addition to extrinsic parameters such as temperature and magnetic field. It turns out that a rising magnetic field unexpectedly reinforces the bipartite entanglement due to the Zeeman splitting of energy levels, which lifts a two-fold degeneracy of the quantum ferrimagnetic ground state. The maximal bipartite entanglement is thus reached within a quantum ferrimagnetic phase at sufficiently low but nonzero magnetic fields on assumption that the gyromagnetic g-factors of the spin-1/2 and spin-1 magnetic ions are equal and the uniaxial single-ion anisotropy is a half of the exchange constant. It is suggested that the heterodinuclear complex [Ni(dpt)(H$_2$O)Cu(pba)]$\cdot$2H$_2$O (pba=1,3-propylenebis(oxamato) and dpt=bis-(3-aminopropyl)amine), which affords an experimental realization of the mixed spin-(1/2,1) Heisenberg dimer, remains strongly entangled up to relatively high temperatures (about 140~K) and magnetic fields (about 140~T) being comparable with the relevant exchange constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源