论文标题

从天空计数:用于遥感对象计数和基准方法的大型数据集

Counting from Sky: A Large-scale Dataset for Remote Sensing Object Counting and A Benchmark Method

论文作者

Gao, Guangshuai, Liu, Qingjie, Wang, Yunhong

论文摘要

对象计数的目的是估算给定图像的对象数量,是一项重要且具有挑战性的计算任务。已经致力于解决这个问题并取得了巨大进展,但几乎没有研究遥感图像中的地面对象的数量。在本文中,我们有兴趣从遥感图像计数密集的对象。与自然场景中的对象计数相比,此任务在以下因素中具有挑战性:大规模变化,复杂的混乱背景和定向任意性。更重要的是,数据稀缺严重限制了该领域的研究的发展。为了解决这些问题,我们首先构建一个具有遥感图像的大规模对象,其中包含四个重要的地理对象:建筑物,港口中拥挤的船只,大型车辆和停车场中的小型车辆。然后,我们通过设计一个可以生成输入图像的密度图的新型神经网络来基准数据集。提出的网络由三个部分组成,即注意模块,比例金字塔模块和可变形的卷积模块,以攻击上述挑战性因素。与最先进的方法相比,在提出的数据集和一个人群计数数据集中进行了广泛的实验,这证明了所提出的数据集的挑战以及我们方法的优势和有效性。

Object counting, whose aim is to estimate the number of objects from a given image, is an important and challenging computation task. Significant efforts have been devoted to addressing this problem and achieved great progress, yet counting the number of ground objects from remote sensing images is barely studied. In this paper, we are interested in counting dense objects from remote sensing images. Compared with object counting in a natural scene, this task is challenging in the following factors: large scale variation, complex cluttered background, and orientation arbitrariness. More importantly, the scarcity of data severely limits the development of research in this field. To address these issues, we first construct a large-scale object counting dataset with remote sensing images, which contains four important geographic objects: buildings, crowded ships in harbors, large-vehicles and small-vehicles in parking lots. We then benchmark the dataset by designing a novel neural network that can generate a density map of an input image. The proposed network consists of three parts namely attention module, scale pyramid module and deformable convolution module to attack the aforementioned challenging factors. Extensive experiments are performed on the proposed dataset and one crowd counting datset, which demonstrate the challenges of the proposed dataset and the superiority and effectiveness of our method compared with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源