论文标题

使用卷积神经网络改善扫描探针显微镜图像的分割

Improving the Segmentation of Scanning Probe Microscope Images using Convolutional Neural Networks

论文作者

Farley, Steff, Hodgkinson, Jo E. A., Gordon, Oliver M., Turner, Joanna, Soltoggio, Andrea, Moriarty, Philip J., Hunsicker, Eugenie

论文摘要

可以考虑各种技术来分割纳米结构表面的图像。手动分割这些图像是耗时的,导致了用户依赖性的分割偏差,而目前,对于特定技术,图像类和示例的最佳自动分割方法尚无共识。任何图像分割方法都必须最大程度地减少图像中的噪声,以确保可以进行准确而有意义的统计分析。在这里,我们开发了通过有机溶剂沉积在硅表面上形成的金纳米颗粒2D组件图像进行分割的方案。溶剂的蒸发驱动颗粒的远程平衡自我组织,产生了多种纳米和微结构模式。我们表明,使用U-NET卷积神经网络的细分策略优于传统的自动化方法,并且在处理纳米结构系统图像中具有特殊的潜力。

A wide range of techniques can be considered for segmentation of images of nanostructured surfaces. Manually segmenting these images is time-consuming and results in a user-dependent segmentation bias, while there is currently no consensus on the best automated segmentation methods for particular techniques, image classes, and samples. Any image segmentation approach must minimise the noise in the images to ensure accurate and meaningful statistical analysis can be carried out. Here we develop protocols for the segmentation of images of 2D assemblies of gold nanoparticles formed on silicon surfaces via deposition from an organic solvent. The evaporation of the solvent drives far-from-equilibrium self-organisation of the particles, producing a wide variety of nano- and micro-structured patterns. We show that a segmentation strategy using the U-Net convolutional neural network outperforms traditional automated approaches and has particular potential in the processing of images of nanostructured systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源