论文标题

正规化的非均匀段和有效的无滑水动力学

Regularised non-uniform segments and efficient no-slip elastohydrodynamics

论文作者

Walker, Benjamin J., Gaffney, Eamonn A.

论文摘要

长期以来,粘性液中细长体的弹性水力动力学一直是理论研究的根源,与纤毛和鞭毛的微观世界有关,以及与生物学和工程活性物质有关。尽管最近的工作已经克服了通常与细长的弹性水力动力学相关的严重数值刚度,并在周围的流体上同时使用局部和非本地耦合,但没有可比较效率的框架,可以严格地证明其流体动力学精度。在这项研究中,我们将丝状弹性水力动力学的发展与最近的细长体理论相结合,为代数渐近准确性提供了在可能不均匀的横截面半径的细长丝表面上常见的无滑动条件。此外,我们在保留了当代弹性水力动力学方法的显着实践效率的同时,从正则化的Stokeslet段的方法中汲取灵感,以产生有效且灵活的纤维化理论的正则不均匀均匀段。

The elastohydrodynamics of slender bodies in a viscous fluid have long been the source of theoretical investigation, being pertinent to the microscale world of ciliates and flagellates as well as to biological and engineered active matter more generally. Though recent works have overcome the severe numerical stiffness typically associated with slender elastohydrodynamics, employing both local and non-local couplings to the surrounding fluid, there is no framework of comparable efficiency that rigorously justifies its hydrodynamic accuracy. In this study, we combine developments in filament elastohydrodynamics with a recent slender-body theory, affording algebraic asymptotic accuracy to the commonly imposed no-slip condition on the surface of a slender filament of potentially non-uniform cross-sectional radius. Further, we do this whilst retaining the remarkable practical efficiency of contemporary elastohydrodynamic approaches, having drawn inspiration from the method of regularised Stokeslet segments to yield an efficient and flexible slender-body theory of regularised non-uniform segments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源