论文标题

探索通过物理知识深度学习探索缺失的流动动力学:参数化的管理系统

Explore missing flow dynamics by physics-informed deep learning: the parameterised governing systems

论文作者

Xu, Hui, Zhang, Wei, Wang, Yong

论文摘要

在广泛的学科中,获得和理解流动动态具有很大的重要性,例如天体物理学,地球物理学,生物学,机械工程和生物医学工程。作为一种可靠的方式,尤其是对于湍流,可以通过实验测量速度及其统计的区域流量信息。由于忠诚度或其他技术局限性差,可能无法在感兴趣的地区解决某些信息。另一方面,详细的流量特征由管理方程式描述,例如粘性流体的Navier-Stokes方程,可以通过数值解决,这在很大程度上取决于计算资源或建模的能力。或者,我们通过采用物理信息深度学习来解决此问题,并将管理方程视为参数化的约束,以恢复缺失的流动动力学。我们证明,对于有限的数据,无论实验或其他数据,都可以使用参数化的管理方程来重建所需数据或未测量的区域的流动动力学。同时,可以获得具有控制参数的空间分布(例如,湍流模块的涡流粘度)的较富裕数据集。本文提供的方法可以阐明数据驱动的尺度自适应湍流结构,以恢复和理解复杂的流体物理,并可以扩展到除流体力学以外的其他参数化处理系统。

Gaining and understanding the flow dynamics have much importance in a wide range of disciplines, e.g. astrophysics, geophysics, biology, mechanical engineering and biomedical engineering. As a reliable way in practice, especially for turbulent flows, regional flow information such as velocity and its statistics, can be measured experimentally. Due to the poor fidelity or other technical limitations, some information may not be resolved in a region of interest. On the other hand, detailed flow features are described by the governing equations, e.g. the Navier-Stokes equations for viscous fluid, and can be resolved numerically, which is heavily dependent on the capability of either computing resources or modelling. Alternatively, we address this problem by employing the physics-informed deep learning, and treat the governing equations as a parameterised constraint to recover the missing flow dynamics. We demonstrate that with limited data, no matter from experiment or others, the flow dynamics in the region where the required data is missing or not measured, can be reconstructed with the parameterised governing equations. Meanwhile, a richer dataset, with spatial distribution of the control parameter (e.g. eddy viscosity of turbulence modellings), can be obtained. The method provided in this paper may shed light on data-driven scale-adaptive turbulent structure recovering and understanding of complex fluid physics, and can be extended to other parameterised governing systems beyond fluid mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源