论文标题

关于双曲线保护法的不连续的盖尔金方法中通量和斜率限制的新观点

A new perspective on flux and slope limiting in discontinuous Galerkin methods for hyperbolic conservation laws

论文作者

Kuzmin, Dmitri

论文摘要

在这项工作中,我们讨论并开发了标量双曲线问题的不连续盖尔金(DG)离散的多维限制技术。为了确保每个单元平均值满足局部离散的最大原理(DMP),我们对分段线性(P1)近似的局部宽松液化磁通限制了不平等约束。由于分段恒定版本(P0)版本对应于属性的低阶有限体积方法,因此DMP条件的有效性始终可以使用斜率和/或通量限制器执行。我们表明,(当前不常见的)直接通量限制的使用使得可以构建更准确的DMP - 可满足近似值,在这种近似值中,使用较弱的斜率限制形式来防止溶液梯度的无限生长。此外,磁通量和斜率都可以受到限制,即使在稳定状态下,也会产生明确的残留物的非线性问题。我们根据不同种类的不平等约束来得出/当前的坡度限制器,讨论其特性,并引入新的各向异性限制器,以解决需要对不同空间方向进行不同处理的问题。在通量限制阶段,可以使用对DMP约束的局部界限的自定义定义来考虑手头问题的各向异性。在坡度限制阶段,我们使用来自单元平均值的低阶重建来调整单个方向衍生物的大小以定义边界。通过这种方式,我们避免在平滑峰和内部/边界层中对良好分辨的衍生物的不必要限制。在数值研究中探索了所选算法的特性,以解决二维测试问题的DG-P1离散化。在HP自适应DG方法的背景下,新的限制过程可用于在平滑度指示器上标记为“陷入困境”的宏观元素中。

In this work, we discuss and develop multidimensional limiting techniques for discontinuous Galerkin (DG) discretizations of scalar hyperbolic problems. To ensure that each cell average satisfies a local discrete maximum principle (DMP), we impose inequality constraints on the local Lax-Friedrichs fluxes of a piecewise-linear (P1) approximation. Since the piecewise-constant (P0) version corresponds to a property-preserving low-order finite volume method, the validity of DMP conditions can always be enforced using slope and/or flux limiters. We show that the (currently rather uncommon) use of direct flux limiting makes it possible to construct more accurate DMP-satisfying approximations in which a weak form of slope limiting is used to prevent unbounded growth of solution gradients. Moreover, both fluxes and slopes can be limited in a manner which produces nonlinear problems with well-defined residuals even at steady state. We derive/present slope limiters based on different kinds of inequality constraints, discuss their properties and introduce new anisotropic limiters for problems that require different treatment of different space directions. At the flux limiting stage, the anisotropy of the problem at hand can be taken into account by using a customized definition of local bounds for the DMP constraints. At the slope limiting stage, we adjust the magnitude of individual directional derivatives using low-order reconstructions from cell averages to define the bounds. In this way, we avoid unnecessary limiting of well-resolved derivatives at smooth peaks and in internal/boundary layers. The properties of selected algorithms are explored in numerical studies for DG-P1 discretizations of two-dimensional test problems. In the context of hp-adaptive DG methods, the new limiting procedures can be used in P1 subcells of macroelements marked as `troubled' by a smoothness indicator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源