论文标题

具有真实极点,根渐近肌和GMP矩阵的正交合理函数

Orthogonal rational functions with real poles, root asymptotics, and GMP matrices

论文作者

Eichinger, Benjamin, Lukić, Milivoje, Young, Giorgio

论文摘要

关于$ \ mathbb {r} $的度量及其在雅各比矩阵上的应用,正交多项式的渐近性行为的渐近行为具有广泛的理论。该理论具有明显的仿射不变性,并且对于$ \ infty $来说是非常特殊的角色。我们将该理论的各个方面扩展在$ \ Overline {\ Mathbb {r}} = \ Mathbb {r} \ cup \ {\ infty \} $上的有理函数的设置中,获得了多个电池,并证明了$ \ operline的不变性,并获得了$ \ mathbb的不变性。我们从其矩阵元素方面获得了GMP矩阵的stahl--totik规律性的表征;作为应用程序,我们给出了Simon的猜想的证明 - 有限间隙集上常规雅各比矩阵的nevai属性。

There is a vast theory of the asymptotic behavior of orthogonal polynomials with respect to a measure on $\mathbb{R}$ and its applications to Jacobi matrices. That theory has an obvious affine invariance and a very special role for $\infty$. We extend aspects of this theory in the setting of rational functions with poles on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$, obtaining a formulation which allows multiple poles and proving an invariance with respect to $\overline{\mathbb{R}}$-preserving Möbius transformations. We obtain a characterization of Stahl--Totik regularity of a GMP matrix in terms of its matrix elements; as an application, we give a proof of a conjecture of Simon -- a Cesàro--Nevai property of regular Jacobi matrices on finite gap sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源