论文标题

对于四阶非线性扩散方程

Efficient second-order semi-implicit finite element method for fourth-order nonlinear diffusion equations

论文作者

Keita, Sana, Beljadid, Abdelaziz, Bourgault, Yves

论文摘要

我们在这里专注于一类四阶抛物线方程,可以通过引入辅助变量来写入二阶方程系统。我们设计了一种新型的二阶完全离散的混合有限元方法来近似这些方程。在我们的方法中,我们提出了使用二阶向后分化公式为时间导数和非线性项近似的特殊技术提出的新技术。在非线性术语中,提出的技术在计算成本方面有效地有效地将开发的数值方案有效,因为该建议的方法仅在每个时间步骤都处理线性系统,并且不需要迭代分辨率。使用系统的制造和分析解决方案的方法进行数值收敛研究,在该方法中我们研究了不同的边界条件。关于空间离散化,发现收敛速率至少与线性问题可用的先验错误估计值匹配。通过对时间离散化的研究,完成了收敛分析,在该研究中,我们使用参考解决方案的方法在数值上证明了所提出的方案的二阶时间准确性。我们提出了一系列数值测试,以证明所提出的方案的效率和鲁棒性。

We focus here on a class of fourth-order parabolic equations that can be written as a system of second-order equations by introducing an auxiliary variable. We design a novel second-order fully discrete mixed finite element method to approximate these equations. In our approach, we propose new techniques using the second-order backward differentiation formula for the time derivative and a special technique for the approximation of nonlinear terms. The use of the proposed technique for nonlinear terms makes the developed numerical scheme efficient in terms of computational cost since the proposed method only deals with a linear system at each time step and no iterative resolution is needed. A numerical convergence study is performed using the method of manufactured and analytical solutions of the system where we investigate different boundary conditions. With respect to the spatial discretization, convergence rates are found to at least match a priori error estimates available for linear problems. The convergence analysis is completed with an investigation of the temporal discretization where we numerically demonstrate the second-order time-accuracy of the proposed scheme using the method of reference solution. We present a series of numerical tests to demonstrate the efficiency and robustness of the proposed scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源