论文标题

对较无监督的域适应的对抗双截然不同的分类器

Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation

论文作者

Jing, Taotao, Ding, Zhengming

论文摘要

无监督的域适应性(UDA)试图通过从不同分布的标记源域构建学习模型来识别未标记的目标样本。常规的UDA集中于通过深层对抗网络提取域不变特征。但是,他们中的大多数都试图匹配不同的域特征分布,而没有考虑各个类别的特定任务决策边界。在本文中,我们提出了一个新颖的对抗双重不同的分类器网络(AD $^2 $ CN),以使源和目标域数据分布与匹配的特定于任务的类别边界同时对齐。具体来说,利用域不变特征生成器将源数据嵌入潜在的公共空间中,并在判别跨域对齐的指导下。此外,我们自然设计了两个不同的结构分类器,以在标记的源域数据的监督下识别未标记的目标样本。具有各种架构的双重不同分类器可以从不同的角度捕获目标数据结构的多样化知识。对几个跨域视觉基准测试的广泛实验结果通过将其与其他最先进的UDA进行比较来证明该模型的有效性。

Unsupervised Domain adaptation (UDA) attempts to recognize the unlabeled target samples by building a learning model from a differently-distributed labeled source domain. Conventional UDA concentrates on extracting domain-invariant features through deep adversarial networks. However, most of them seek to match the different domain feature distributions, without considering the task-specific decision boundaries across various classes. In this paper, we propose a novel Adversarial Dual Distinct Classifiers Network (AD$^2$CN) to align the source and target domain data distribution simultaneously with matching task-specific category boundaries. To be specific, a domain-invariant feature generator is exploited to embed the source and target data into a latent common space with the guidance of discriminative cross-domain alignment. Moreover, we naturally design two different structure classifiers to identify the unlabeled target samples over the supervision of the labeled source domain data. Such dual distinct classifiers with various architectures can capture diverse knowledge of the target data structure from different perspectives. Extensive experimental results on several cross-domain visual benchmarks prove the model's effectiveness by comparing it with other state-of-the-art UDA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源