论文标题
评论“ 2D湍流中的零涡度拉格朗日路径的形状不变性”
Comment on 'Conformal invariance of the zero-vorticity Lagrangian path in 2D turbulence'
论文作者
论文摘要
Grebenev等人的当前主张。 [J。物理。答:数学。理论。 52,335501(2019)],即,在零涡流路径上允许的保形不变性上的无粘性和未锁定的2d lundgren-monin-novikov(LMN)方程是基于Grebenev et et and forbeand path允许的保形不变性。 (2017)。 Grebenev等人现在扩大了欧拉图片之前的所有错误结果和结论。 (2019年)到拉格朗日图片。尽管我们已经对这些错误发表了评论,并始终驳斥了他们先前的研究(Frewer&Khujadze,2018年),但我们认为有必要在Grebenev等人的新表述和符号中再次解决和讨论这些错误。 (2019年),因为它将为此问题提供新的见解。
The current claim by Grebenev et al. [J. Phys. A: Math. Theor. 52, 335501 (2019)], namely that the inviscid and unclosed 2D Lundgren-Monin-Novikov (LMN) equations on a zero-vorticity Lagrangian path admit conformal invariance, is based on a flawed and misleading analysis published earlier by Grebenev et al. (2017). All false results and conclusions made before in the Eulerian picture were now extended by Grebenev et al. (2019) to the Lagrangian picture. Although we have already commented on these errors and consistently refuted their previous study (Frewer & Khujadze, 2018), we deem it necessary to address and discuss these errors again in the new formulation and notation of Grebenev et al. (2019) as it will offer new insights into this issue.