论文标题

具有可重构衍射处理单元的大型神经形态光电计算

Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit

论文作者

Zhou, Tiankuang, Lin, Xing, Wu, Jiamin, Chen, Yitong, Xie, Hao, Li, Yipeng, Fan, Jintao, Wu, Huaqiang, Fang, Lu, Dai, Qionghai

论文摘要

针对特定应用的光学处理器已被认为是现代计算的破坏性技术,可以通过提供大大改善的计算性能来从根本上加速人工智能(AI)的发展。用于神经信息处理的光学神经网络体系结构的最新进展已应用于执行各种机器学习任务。但是,现有的架构的复杂性和性能有限。他们每个人都需要自己的专用设计,这些设计无法重新配置以在部署后的不同应用程序之间切换不同的神经网络模型。在这里,我们通过构建一个可以有效支持不同神经网络并实现数百万个神经元的高模型复杂性来提出一个光电可重构​​计算范式。它通过动态编程的光学调制器和光电删除器来更新数据调制和大规模网络参数更新的数据调制速度和大规模网络参数更新。我们证明了DPU的重新配置,以实施各种衍射喂养和复发性神经网络,并开发了一种新型的自适应训练方法来规避系统不完美。我们应用了训练有素的网络,以通过基准数据集对手写数字图像和人类动作视频进行高速分类,实验结果显示出与电子计算方法的分类准确性。此外,我们使用现成的光电组件构建的原型系统超过了最先进的图形处理单元(GPU)的性能,在计算速度上几次,并且在系统能源效率方面的数量级超过数量级。

Application-specific optical processors have been considered disruptive technologies for modern computing that can fundamentally accelerate the development of artificial intelligence (AI) by offering substantially improved computing performance. Recent advancements in optical neural network architectures for neural information processing have been applied to perform various machine learning tasks. However, the existing architectures have limited complexity and performance; and each of them requires its own dedicated design that cannot be reconfigured to switch between different neural network models for different applications after deployment. Here, we propose an optoelectronic reconfigurable computing paradigm by constructing a diffractive processing unit (DPU) that can efficiently support different neural networks and achieve a high model complexity with millions of neurons. It allocates almost all of its computational operations optically and achieves extremely high speed of data modulation and large-scale network parameter updating by dynamically programming optical modulators and photodetectors. We demonstrated the reconfiguration of the DPU to implement various diffractive feedforward and recurrent neural networks and developed a novel adaptive training approach to circumvent the system imperfections. We applied the trained networks for high-speed classifying of handwritten digit images and human action videos over benchmark datasets, and the experimental results revealed a comparable classification accuracy to the electronic computing approaches. Furthermore, our prototype system built with off-the-shelf optoelectronic components surpasses the performance of state-of-the-art graphics processing units (GPUs) by several times on computing speed and more than an order of magnitude on system energy efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源