论文标题
参数动态因果建模
Parametric dynamic causal modelling
论文作者
论文摘要
该技术说明引入了参数动态因果建模,这是一种推断控制快速神经元态波动的生物物理参数慢变化的方法。我们想到的应用结构域是推断变量的缓慢变化(例如,细胞外离子浓度或突触功效),这些变量是脑活动相位的基础(例如,阵发性癫痫发作活性)的基础。该方案是有效的,但仍保留了生物物理解释,因为基于建立的神经质量模型,这些模型具有缓慢的参数动态(例如突触率常数或有效的连接性)。简而言之,我们使用绝热近似来总结隐藏的神经元状态(及其在传感器中的表达)的快速波动,以其二阶统计数据;也就是说,它们的复杂跨光谱。这允许人们指定和比较缓慢变化的参数(使用贝叶斯模型还原)的模型,该参数生成了电生理记录的一系列经验跨光谱。至关重要的是,我们在神经元活动的光谱能力中使用缓慢的波动作为突触参数变化的经验先验。这引入了圆形因果关系,其中突触参数承载了快速神经元活性,进而诱导突触参数中的活性依赖性可塑性。在本基础论文中,我们描述了基本模型,使用模拟建立其面部有效性,并为癫痫发作活性的化学弹跳动物模型提供了说明性应用。
This technical note introduces parametric dynamic causal modelling, a method for inferring slow changes in biophysical parameters that control fluctuations of fast neuronal states. The application domain we have in mind is inferring slow changes in variables (e.g., extracellular ion concentrations or synaptic efficacy) that underlie phase transitions in brain activity (e.g., paroxysmal seizure activity). The scheme is efficient and yet retains a biophysical interpretation, in virtue of being based on established neural mass models that are equipped with a slow dynamic on the parameters (such as synaptic rate constants or effective connectivity). In brief, we use an adiabatic approximation to summarise fast fluctuations in hidden neuronal states (and their expression in sensors) in terms of their second order statistics; namely, their complex cross spectra. This allows one to specify and compare models of slowly changing parameters (using Bayesian model reduction) that generate a sequence of empirical cross spectra of electrophysiological recordings. Crucially, we use the slow fluctuations in the spectral power of neuronal activity as empirical priors on changes in synaptic parameters. This introduces a circular causality, in which synaptic parameters underwrite fast neuronal activity that, in turn, induces activity-dependent plasticity in synaptic parameters. In this foundational paper, we describe the underlying model, establish its face validity using simulations and provide an illustrative application to a chemoconvulsant animal model of seizure activity.