论文标题
低张量列车和低多线性等级近似值,用于脱螺旋和压缩3D光学相干断层扫描图像
Low Tensor Train- and Low Multilinear Rank Approximations for De-speckling and Compression of 3D Optical Coherence Tomography Images
论文作者
论文摘要
本文提出了低张量训练(TT)等级和低多线性(ML)等级近似值,用于给定压缩比(CR)的3D光学相干断层扫描(OCT)图像的脱螺旋和压缩。为此,我们得出了基于乘数的算法的交替方向方法,用于限制低TT和低ML等级的相关问题。等级约束是通过未展开的矩阵的Schatten-P(SP)Norm,P E {0、1/2、2/3、1}实现的。我们为两种算法的固定点提供了全球收敛的证明。秩调整后的3D OCT图像张量最终通过张量列车和Tucker交替的最小二乘分解。我们使用JPEG2000和3D SPIHT压缩方法的22个3D OCT图像验证了低TT和低ML等级方法,并且没有压缩2D双边滤波(BF),2D中值滤波(MF),以及增强的低率矩阵矩阵分解(Elrrpsd)方法。对于Cr <10,具有PE {0、1/2、2/3}的低SP TT等级方法可产生最高或可比的信噪比(SNR),并且可比或更好的对比度与噪声比(CNR),均值段段误差(SES)的eRINA层误差(SES)和基于专家的图像质量得分(EIQS)比原始图像和图像图像和图像组合方法。它在CNR方面可以很好地比较,在SE和EIQ方面,使用无图像压缩方法进行了比较。因此,对于Cr <10,低S2/3 TT秩近似值可以被认为是基于视觉检查的诊断的好选择。对于2 <cr <60,低S1 ml秩方法在SE中与图像压缩方法以及2D BF和ELRPSD进行了比较。它略低于2D MF。因此,对于2 <cr <60,低S1 ML等级近似值可以被认为是基于分割的诊断现场或远程操作模式的理想选择。
This paper proposes low tensor-train (TT) rank and low multilinear (ML) rank approximations for de-speckling and compression of 3D optical coherence tomography (OCT) images for a given compression ratio (CR). To this end, we derive the alternating direction method of multipliers based algorithms for the related problems constrained with the low TT- and low ML rank. Rank constraints are implemented through the Schatten-p (Sp) norm, p e {0, 1/2, 2/3, 1}, of unfolded matrices. We provide the proofs of global convergence towards a stationary point for both algorithms. Rank adjusted 3D OCT image tensors are finally approximated through tensor train- and Tucker alternating least squares decompositions. We comparatively validate the low TT- and low ML rank methods on twenty-two 3D OCT images with the JPEG2000 and 3D SPIHT compression methods, as well as with no compression 2D bilateral filtering (BF), 2D median filtering (MF), and enhanced low-rank plus sparse matrix decomposition (ELRpSD) methods. For the CR<10, the low Sp TT rank method with pe{0, 1/2, 2/3} yields either highest or comparable signal-to-noise ratio (SNR), and comparable or better contrast-to-noise ratio (CNR), mean segmentation errors (SEs) of retina layers and expert-based image quality score (EIQS) than original image and image compression methods. It compares favorably in terms of CNR, fairly in terms of SE and EIQS with the no image compression methods. Thus, for CR<10 the low S2/3 TT rank approximation can be considered a good choice for visual inspection based diagnostics. For 2<CR<60, the low S1 ML rank method compares favorably in terms of SE with image compression methods and with 2D BF and ELRpSD. It is slightly inferior to 2D MF. Thus, for 2<CR<60, the low S1 ML rank approximation can be considered a good choice for segmentation based diagnostics either on-site or in the remote mode of operation.