论文标题

长离子字符串的量子计算的可扩展和平行镊子门

Scalable and Parallel Tweezer Gates for Quantum Computing with Long Ion Strings

论文作者

Olsacher, Tobias, Postler, Lukas, Schindler, Philipp, Monz, Thomas, Zoller, Peter, Sieberer, Lukas M.

论文摘要

被困的离子量子计算机已证明了大约十个量子位的寄存器中的高性能门操作。但是,由于离子的运动模式的全球性质,介导量子标准耦合的离子模式的全球性质,用长的一维离子字符串扩展和并行化量子计算是一个杰出的挑战。在这里,我们设计了通过使用工程的局部声子模式实现可扩展和并行纠缠门的方法。我们建议通过使用可编程光学镊子调整单个离子的局部潜力来量身定制这种局部模式。小量子组的局部模式构成了并行在这些子集上执行纠缠门的基础。我们通过为长1D离子链甚至均匀间隔离子的无限链展示分析和数值结果来证明这种方法的固有可伸缩性。此外,我们表明,将我们的方法与最佳相干控制技术相结合,可以实现最大密集的通用平行量子电路。

Trapped-ion quantum computers have demonstrated high-performance gate operations in registers of about ten qubits. However, scaling up and parallelizing quantum computations with long one-dimensional (1D) ion strings is an outstanding challenge due to the global nature of the motional modes of the ions which mediate qubit-qubit couplings. Here, we devise methods to implement scalable and parallel entangling gates by using engineered localized phonon modes. We propose to tailor such localized modes by tuning the local potential of individual ions with programmable optical tweezers. Localized modes of small subsets of qubits form the basis to perform entangling gates on these subsets in parallel. We demonstrate the inherent scalability of this approach by presenting analytical and numerical results for long 1D ion chains and even for infinite chains of uniformly spaced ions. Furthermore, we show that combining our methods with optimal coherent control techniques allows to realize maximally dense universal parallelized quantum circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源