论文标题

解开消费品市场竞争的复杂性 - 复杂的希尔伯特PCA分析

Untangling the complexity of market competition in consumer goods -A complex Hilbert PCA analysis

论文作者

Mizuno, Makoto, Aoyama, Hideaki, Fujiwara, Yoshi

论文摘要

当今的消费品市场正在迅速发展,信息媒体的数量以及竞争产品的数量显着增长。在这种环境下,需要对具有管理科学家和经济学家的兴趣的公司和客户的异质互动进行定量掌握,这需要对极高的数据进行分析。没有任何可靠的先验知识或强有力的假设,定量研究中的现有方法无法处理此类数据。另外,我们提出了一种称为复杂Hilbert主体成分分析(CHPCA)的新方法,并使用Hodge分解构建同步网络。 CHPCA使我们能够通过数据引导/延迟提取重要的合并,而Hodge分解对于识别相关时间结构很有用。我们将此方法应用于日本啤酒市场数据,并揭示了多种产品中与消费者选择过程相关的变量的合并。此外,我们通过计算从CHPCA结果中的空间中计算每个客户的坐标来发现出色的客户异质性。最后,我们讨论了拟议方法的政策和管理含义,局限性以及进一步的发展。

Today's consumer goods markets are rapidly evolving with significant growth in the number of information media as well as the number of competitive products. In this environment, obtaining a quantitative grasp of heterogeneous interactions of firms and customers, which have attracted interest of management scientists and economists, requires the analysis of extremely high-dimensional data. Existing approaches in quantitative research could not handle such data without any reliable prior knowledge nor strong assumptions. Alternatively, we propose a novel method called complex Hilbert principal component analysis (CHPCA) and construct a synchronization network using Hodge decomposition. CHPCA enables us to extract significant comovements with a time lead/delay in the data, and Hodge decomposition is useful for identifying the time-structure of correlations. We apply this method to the Japanese beer market data and reveal comovement of variables related to the consumer choice process across multiple products. Furthermore, we find remarkable customer heterogeneity by calculating the coordinates of each customer in the space derived from the results of CHPCA. Lastly, we discuss the policy and managerial implications, limitations, and further development of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源