论文标题

横向线性子空间到有限场上的超曲面

Transverse linear subspaces to hypersurfaces over finite fields

论文作者

Asgarli, Shamil, Duan, Lian, Lai, Kuan-Wen

论文摘要

Ballico证明,在有限的$ Q $元素的有限字段上,光滑的投影品种$ x $ $ d $,如果$ q \ geq d(d-1)^{\ dim x} $,则可以承认平滑的超平面部分。在本文中,我们完善了此标准,以在平滑的超曲面上进行更高的编码线性切片,并在Frobenius经典的超曲面上使用超平面切片。我们还证明,在减少曲面上存在减少的超平面切片的存在相似的结果。

Ballico proved that a smooth projective variety $X$ of degree $d$ over a finite field of $q$ elements admits a smooth hyperplane section if $q\geq d(d-1)^{\dim X}$. In this paper, we refine this criterion for higher codimensional linear sections on smooth hypersurfaces and for hyperplane sections on Frobenius classical hypersurfaces. We also prove a similar result for the existence of reduced hyperplane sections on reduced hypersurfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源