论文标题
将机器学习与多尺寸数字链接:数据驱动的均质方程发现
Linking Machine Learning with Multiscale Numerics: Data-Driven Discovery of Homogenized Equations
论文作者
论文摘要
与时空数据一致的偏微分方程(PDE)的数据驱动的发现正在经历机器学习研究中的重生。培训深层神经网络以学习此类数据驱动的部分差分操作员需要广泛的时空数据。为了从计算细尺度模拟数据中学习粗尺度PDE,培训数据收集过程可能非常昂贵。我们建议通过将机器学习(此处,神经网络)与现代多尺度科学计算(此处,无方程式数字)联系起来,以转化这一培训数据收集过程。这些无方程式技术是在稀疏的小型,适当耦合的时空子域(“ patches”)的稀疏集合中运行的,并相互生成所需的宏观尺度培训数据。我们的说明性示例涉及在一个和二维中发现有效的均质方程,这是针对精细材料属性变化的问题。该方法有望通过有效地总结“最佳”精细尺度模拟模型中体现的物理学来发现准确的宏观尺度有效材料PDE模型。
The data-driven discovery of partial differential equations (PDEs) consistent with spatiotemporal data is experiencing a rebirth in machine learning research. Training deep neural networks to learn such data-driven partial differential operators requires extensive spatiotemporal data. For learning coarse-scale PDEs from computational fine-scale simulation data, the training data collection process can be prohibitively expensive. We propose to transformatively facilitate this training data collection process by linking machine learning (here, neural networks) with modern multiscale scientific computation (here, equation-free numerics). These equation-free techniques operate over sparse collections of small, appropriately coupled, space-time subdomains ("patches"), parsimoniously producing the required macro-scale training data. Our illustrative example involves the discovery of effective homogenized equations in one and two dimensions, for problems with fine-scale material property variations. The approach holds promise towards making the discovery of accurate, macro-scale effective materials PDE models possible by efficiently summarizing the physics embodied in "the best" fine-scale simulation models available.