论文标题
原动性磁盘中垂直剪切不稳定性的三明治模式
The Sandwich Mode for Vertical Shear Instability in Protoplanetary Disks
论文作者
论文摘要
湍流对原星盘(PPD)中气体和灰尘的演变产生了深远的影响,从驱动碰撞和灰尘晶粒的扩散,到巨型涡流中卵石的浓度,从而促进行星形成。垂直剪切不稳定性(VSI)是一种流体动力机制,如果局部热松弛速率足够高,则在PPD中运行。然而,先前对VSI的研究取决于恒定冷却速率的假设,或者忽略了气体颗粒和灰尘晶粒之间的有限耦合时间。在这里,我们用冥王星代码介绍了PPD的流体动力模拟的结果,其中包括更逼真的热松弛处方,这使我们能够在磁盘的光学厚度和光学上薄的部分中研究正在考虑的热粉尘粉偶联的磁盘中的VSI。我们显示了VSI即使在我们的二维和三维模拟中的PPD的光学厚内区域中也会引起湍流。高层大气中的灰尘和气体颗粒的碰撞脱钩以及相应的热弛豫速率导致VSI湍流的阻尼。在我们的三维模拟中形成了长寿命的反气旋涡旋。这些结构从VSI活性层中的湍流中出现,持续数百个轨道,并在整个湍流区域的范围内垂直延伸。我们得出的结论是,VSI导致湍流和在$ \ pm $ 3的压力尺度高度距离磁盘中平面距离内的长寿命陷阱的形成
Turbulence has a profound impact on the evolution of gas and dust in protoplanetary disks (PPDs), from driving the collisions and the diffusion of dust grains, to the concentration of pebbles in giant vortices, thus, facilitating planetesimal formation. The Vertical Shear Instability (VSI) is a hydrodynamic mechanism, operating in PPDs if the local rate of thermal relaxation is high enough. Previous studies of the VSI have, however, relied on the assumption of constant cooling rates, or neglected the finite coupling time between the gas particles and the dust grains. Here, we present the results of hydrodynamic simulations of PPDs with the PLUTO code that include a more realistic thermal relaxation prescription, which enables us to study the VSI in the optically thick and optically thin parts of the disk under consideration of the thermal dust-gas coupling. We show the VSI to cause turbulence even in the optically thick inner regions of PPDs in our two- and three-dimensional simulations. The collisional decoupling of dust and gas particles in the upper atmosphere and the correspondingly inefficient thermal relaxation rates lead to the damping of the VSI turbulence. Long-lived anticyclonic vortices form in our three-dimensional simulation. These structures emerge from the turbulence in the VSI-active layer, persist over hundreds of orbits and extend vertically over the whole extent of the turbulent region. We conclude that the VSI leads to turbulence and the formation of long-lived dust traps within $\pm$3 pressure scale heights distance from the disk midplane