论文标题

矩阵产品操作员对称和互穿的弦网与域墙

Matrix product operator symmetries and intertwiners in string-nets with domain walls

论文作者

Lootens, Laurens, Fuchs, Jürgen, Haegeman, Jutho, Schweigert, Christoph, Verstraete, Frank

论文摘要

我们提供了字符串 - 网络模型的投影纠缠对状态(PEPS)表示中虚拟非本地矩阵产品运算符(MPO)对称的描述。给定这样的PEPS表示,我们表明其MPO对称的一致性条件构成一组六个耦合方程,可以用Bimodule类别的五角大方方程识别。这使我们能够对所有等效的PEPS表示形式进行分类,并在它们之间构建MPO交织在一起,从而综合并推广拓扑阶段的各种张量网络表示。此外,我们使用这种概括来建立对Kitaev和Kong [Commun构建的不同拓扑阶段之间的域壁的明确实现。数学。物理。 313(2012)351-373]。虽然流行的抽象分类方法足以描述拓扑阶段的结构,但需要明确的张量网络表示来模拟这些系统在计算机上,例如计算基于带有边界的字符串网络的量子错误校正代码的阈值所需的。最后,我们表明,所有这些弦 - 网络PEPS表示可以理解为具有物理边界的三个manifolds上的Turaev-Viro State-sum-state-sum-State-sum模型模型,从而将这些张量网络构造放在数学上严格的基础上。

We provide a description of virtual non-local matrix product operator (MPO) symmetries in projected entangled pair state (PEPS) representations of string-net models. Given such a PEPS representation, we show that the consistency conditions of its MPO symmetries amount to a set of six coupled equations that can be identified with the pentagon equations of a bimodule category. This allows us to classify all equivalent PEPS representations and build MPO intertwiners between them, synthesising and generalising the wide variety of tensor network representations of topological phases. Furthermore, we use this generalisation to build explicit PEPS realisations of domain walls between different topological phases as constructed by Kitaev and Kong [Commun. Math. Phys. 313 (2012) 351-373]. While the prevailing abstract categorical approach is sufficient to describe the structure of topological phases, explicit tensor network representations are required to simulate these systems on a computer, such as needed for calculating thresholds of quantum error-correcting codes based on string-nets with boundaries. Finally, we show that all these string-net PEPS representations can be understood as specific instances of Turaev-Viro state-sum models of topological field theory on three-manifolds with a physical boundary, thereby putting these tensor network constructions on a mathematically rigorous footing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源