论文标题
高质明星的星号学:带有太空望远镜的恒星内饰的新见解
Asteroseismology of high-mass stars: new insights of stellar interiors with space telescopes
论文作者
论文摘要
巨大的恒星是宇宙中重要的金属工厂。他们的生活短而充满活力,其中许多人不可避免地爆炸为超新星,并成为中子之星或黑洞。反过来,巨大恒星的形成,进化和爆炸性死亡会影响周围的星际培养基,并塑造其宿主星系的演变。然而,巨大恒星的化学和动力学演变,包括最终超新星的化学产率和紧凑型物体的残余质量,很大程度上取决于祖细胞恒星的内部物理学。目前,我们缺乏大量恒星中各种物理过程的经验校准处方,但现在正在通过星星疗法来解决这。由于太空望远镜的高精度时间序列光度法,使用恒星振荡的恒星结构和进化 - 在过去的二十年中进行了一场革命。特别是,由大多数,Corot,Brite,Kepler/K2和Tess任务提供的长期光曲线提供了宝贵的数据集,该数据集就光度精度,持续时间和频率分辨率而言,可以成功地将星际学杂志应用于巨大的恒星并探测其内部物理学。巨大恒星中恒星搏动的观察和后续建模揭示了这些恒星的恒星结构和进化模型中的关键成分。因此,在Hertzsprung-Russell图的高度退化部分中,Asterosology为校准了恒星物理学开辟了一个新窗口。在这篇综述中,我提供了有关使用基于地面和早期空间任务取得的进展的历史概述,并通过与现代空间望远镜的星空学来理解我们对大型Star Interiors的最新进展和突破。
Massive stars are important metal factories in the Universe. They have short and energetic lives, and many of them inevitably explode as a supernova and become a neutron star or black hole. In turn, the formation, evolution and explosive deaths of massive stars impact the surrounding interstellar medium and shape the evolution of their host galaxies. Yet the chemical and dynamical evolution of a massive star, including the chemical yield of the ultimate supernova and the remnant mass of the compact object, strongly depend on the interior physics of the progenitor star. We currently lack empirically calibrated prescriptions for various physical processes at work within massive stars, but this is now being remedied by asteroseismology. The study of stellar structure and evolution using stellar oscillations - asteroseismology - has undergone a revolution in the last two decades thanks to high-precision time series photometry from space telescopes. In particular, the long-term light curves provided by the MOST, CoRoT, BRITE, Kepler/K2 and TESS missions provided invaluable data sets in terms of photometric precision, duration and frequency resolution to successfully apply asteroseismology to massive stars and probe their interior physics. The observation and subsequent modelling of stellar pulsations in massive stars has revealed key missing ingredients in stellar structure and evolution models of these stars. Thus asteroseismology has opened a new window into calibrating stellar physics within a highly degenerate part of the Hertzsprung-Russell diagram. In this review, I provide a historical overview of the progress made using ground-based and early space missions, and discuss more recent advances and breakthroughs in our understanding of massive star interiors by means of asteroseismology with modern space telescopes.