论文标题

非交通性轨道上的局部索引公式和仿射元组的Zeta函数

Local Index Formulae on Noncommutative Orbifolds and Equivariant Zeta Functions for the Affine Metaplectic Group

论文作者

Savin, Anton, Schrohe, Elmar

论文摘要

我们考虑$ l^2(\ Mathbb {r}^n)$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a。代数$ a $包括所有非交易性摩ri和曲曲孔的子代数。我们用$ h = l^2(\ Mathbb r^n,λ(\ Mathbb r^n))$定义频谱三重$(a,h,d)$和欧拉操作员$ d $,这是索引$ 1 $的第一阶差异操作员。我们表明,该频谱三重具有简单的尺寸频谱:对于代数$ψ(a,h,d)中的每个操作员$ b $,由shubin型pseudoDifferential operators和$ a $ a $ a $ a $ a $ a $ a $ a $ a $ zeta函数的元素$ζ_B(z)= extriens = {\ rm tr}(\ rm d | d | $ \ mathbb c $带有最简单的杆。然后,我们的主要结果是Connes-Moscovici循环共生的明确代数表达。作为推论,我们获得了用于非交通性托里和感谢您的圆环的局部索引公式。

We consider the algebra $A$ of bounded operators on $L^2(\mathbb{R}^n)$ generated by quantizations of isometric affine canonical transformations. The algebra $A$ includes as subalgebras all noncommutative tori and toric orbifolds. We define the spectral triple $(A, H, D)$ with $H=L^2(\mathbb R^n, Λ(\mathbb R^n))$ and the Euler operator $D$, a first order differential operator of index $1$. We show that this spectral triple has simple dimension spectrum: For every operator $B$ in the algebra $Ψ(A,H,D)$ generated by the Shubin type pseudodifferential operators and the elements of $A$, the zeta function $ζ_B(z) = {\rm Tr} (B|D|^{-2z})$ has a meromorphic extension to $\mathbb C$ with at most simple poles. Our main result then is an explicit algebraic expression for the Connes-Moscovici cyclic cocycle. As a corollary we obtain local index formulae for noncommutative tori and toric orbifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源