论文标题

gan slimming:通过统一优化框架多合一的GAN压缩

GAN Slimming: All-in-One GAN Compression by A Unified Optimization Framework

论文作者

Wang, Haotao, Gui, Shupeng, Yang, Haichuan, Liu, Ji, Wang, Zhangyang

论文摘要

生成对抗网络(GAN)在各种计算机视觉应用程序中越来越受欢迎,最近开始部署到资源受限的移动设备上。与其他深层模型类似,最先进的甘斯遭受了高参数复杂性的影响。最近,这促使探索压缩剂(通常是发电机)。与在压缩深层分类器中的庞大文献和盛行的成功相比,对GAN压缩的研究仍处于起步阶段,到目前为止利用了个体的压缩技术,而不是更复杂的组合。我们观察到,由于臭名昭著的训练gan的不稳定,启发式堆叠不同的压缩技术将导致结果不令人满意。为此,我们提出了第一个统一的优化框架,结合了被称为gan slimming(GS)的GAN压缩的多重压缩均值。 GS无缝将三种主流压缩技术整合在一起:模型蒸馏,通道修剪和量化以及GAN Minimax物镜,将其从端到端有效地进行有效优化。没有铃铛和哨子,GS在压缩图像到图像翻译gans方面基本上要优于现有选项。具体来说,我们将GS应用于压缩Cartoongan,这是一种最先进的风格转移网络,最多47次,视觉质量降低最少。可以在https://github.com/tamu-vita/gan-slimming上找到代码和预训练的模型。

Generative adversarial networks (GANs) have gained increasing popularity in various computer vision applications, and recently start to be deployed to resource-constrained mobile devices. Similar to other deep models, state-of-the-art GANs suffer from high parameter complexities. That has recently motivated the exploration of compressing GANs (usually generators). Compared to the vast literature and prevailing success in compressing deep classifiers, the study of GAN compression remains in its infancy, so far leveraging individual compression techniques instead of more sophisticated combinations. We observe that due to the notorious instability of training GANs, heuristically stacking different compression techniques will result in unsatisfactory results. To this end, we propose the first unified optimization framework combining multiple compression means for GAN compression, dubbed GAN Slimming (GS). GS seamlessly integrates three mainstream compression techniques: model distillation, channel pruning and quantization, together with the GAN minimax objective, into one unified optimization form, that can be efficiently optimized from end to end. Without bells and whistles, GS largely outperforms existing options in compressing image-to-image translation GANs. Specifically, we apply GS to compress CartoonGAN, a state-of-the-art style transfer network, by up to 47 times, with minimal visual quality degradation. Codes and pre-trained models can be found at https://github.com/TAMU-VITA/GAN-Slimming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源