论文标题

学习针对部分域适应的特定目标域分类器

Learning Target Domain Specific Classifier for Partial Domain Adaptation

论文作者

Ren, Chuan-Xian, Ge, Pengfei, Yang, Peiyi, Yan, Shuicheng

论文摘要

当将知识从标记的源域转移到未标记的目标域时,无监督的域适应性〜(UDA)旨在减少分布差异。以前的UDA方法假设源和目标域共享一个相同的标签空间,这在实践中是不现实的,因为目标域的标签信息不可知。本文重点介绍了更现实的UDA场景,即部分域适应(PDA),其中目标标签空间被包含在源标签空间中。在PDA方案中,目标域中没有的源离群值可能与目标域(技术称为负转移)错误匹配,从而导致UDA方法的性能下降。本文提出了一种新型的目标域特异性分类器学习域的适应性(TSCDA)方法。 TSCDA提出了柔和的最大平均差异标准,以部分对齐特征分布并减轻负转移。此外,它还学习具有伪标签和多个辅助分类器的目标域特异性分类器,以进一步解决分类器移位。一个名为同行辅助学习的模块用于最大程度地减少多个目标特异性分类器之间的预测差异,这使得分类器对目标域更加判别。在三个PDA基准数据集上进行的广泛实验表明,TSCDA的表现优于其他最先进的方法,例如$ 4 \%$和$ 5.6 \%$ $ $ $在Office-31和Office Home上。

Unsupervised domain adaptation~(UDA) aims at reducing the distribution discrepancy when transferring knowledge from a labeled source domain to an unlabeled target domain. Previous UDA methods assume that the source and target domains share an identical label space, which is unrealistic in practice since the label information of the target domain is agnostic. This paper focuses on a more realistic UDA scenario, i.e. partial domain adaptation (PDA), where the target label space is subsumed to the source label space. In the PDA scenario, the source outliers that are absent in the target domain may be wrongly matched to the target domain (technically named negative transfer), leading to performance degradation of UDA methods. This paper proposes a novel Target Domain Specific Classifier Learning-based Domain Adaptation (TSCDA) method. TSCDA presents a soft-weighed maximum mean discrepancy criterion to partially align feature distributions and alleviate negative transfer. Also, it learns a target-specific classifier for the target domain with pseudo-labels and multiple auxiliary classifiers, to further address classifier shift. A module named Peers Assisted Learning is used to minimize the prediction difference between multiple target-specific classifiers, which makes the classifiers more discriminant for the target domain. Extensive experiments conducted on three PDA benchmark datasets show that TSCDA outperforms other state-of-the-art methods with a large margin, e.g. $4\%$ and $5.6\%$ averagely on Office-31 and Office-Home, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源